ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-30
    Description: Ice cores in Antarctica and Greenland reveal ice-crystal fabrics that can be softer under simple shear compared with isotropic ice. Owing to the sparseness of ice cores in regions away from the ice divide, we currently lack information about the spatial distribution of ice fabrics and its association with ice flow. Radio-wave reflections are influenced by ice-crystal alignments, allowing them to be tracked provided reflections are recorded simultaneously in orthogonal orientations (polarimetric measurements). Here, we image spatial variations in the thickness and extent of ice fabric across Dome A in East Antarctica, by interpreting polarimetric radar data. We identify four prominent fabric units, each several hundred metres thick, extending over hundreds of square kilometres. By tracing internal ice-sheet layering to the Vostok ice core, we are able to determine the approximate depth–age profile at Dome A. The fabric units correlate with glacial–interglacial cycles, most noticeably revealing crystal alignment contrasts between the Eemian and the glacial episodes before and after. The anisotropy within these fabric layers has a spatial pattern determined by ice flow over subglacial topography.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-13
    Description: Chinese scientists will start to drill a deep ice core at Kunlun station near Dome A in the near future. Recent work has predicted that Dome A is a location where ice older than 1 million years can be found. We model flow, temperature and the age of the ice by applying a three-dimensional, thermo-mechanically coupled full-Stokes model to a 70 km × 70 km domain around Kunlun station, using isotropic non-linear rheology and different prescribed anisotropic ice fabrics that vary the evolution from isotropic to single maximum at 1/3 or 2/3 depths. The variation in fabric is about as important as the uncertainties in geothermal heat flux in determining the vertical advection which in consequence controls both the basal temperature and the age profile. We find strongly variable basal ages across the domain since the ice varies greatly in thickness and any basal melting effectively removes very old ice in the deepest parts of the subglacial valleys. Comparison with dated radar isochrones in the upper one third of the ice sheet cannot sufficiently constrain the age of the deeper ice, with uncertainties as large as 500 000 yr in the basal age. We also assess basal age and thermal state sensitivities to geothermal heat flux and surface conditions. Despite expectations of modest changes in surface height over a glacial cycle at Dome A, even small variations in the evolution of surface conditions cause large variation in basal conditions which is consistent with basal accretion features seen in radar surveys.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-07
    Description: We present results of a~multi-methodological approach to characterize the flow regime of West Ragnhild Glacier, the widest glacier in Dronning Maud Land, Antarctica. A new airborne radar survey points to substantially thicker ice (〉 2000 m) than previously thought. According to the new data, West Ragnhild Glacier discharges 13–14 Gt yr−1. Therefore, it is one of the three major outlet glaciers in Dronning Maud Land. Glacier-bed topography is distinct between the upstream and downstream section. In the downstream section (〈 65 km upstream of the grounding line), the glacier overlies a wide and flat basin well below the sea level while the upstream region is more mountainous. Spectrum analysis of the bed topography reveals a clear contrast between these two regions, suggesting that the downstream area is sediment covered. The bed returned power varies by 30 dB within 20 km near the bed flatness transition, which suggests that water content at bed/ice interface increases over a short distance downstream, hence pointing to water-rich sediment. Ice flow speed observed in the downstream part of the glacier (~ 250 m yr−1) can only be explained if basal motion accounts for ~ 60% of the surface motion. All above lines of evidence (sediment bed, wetness and basal motion) and the relative flat grounding zone give the potential for West Ragnhild Glacier to be more sensitive to external forcing compared to other major outlet glaciers in this region which are more stable due to their bed geometry (e.g. Shirase Glacier).
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-08-25
    Description: Radio-echo sounding of the Antarctic and Greenlandic ice sheets often reveals a layer in the lowest hundreds of meters above bedrock more or less free of radio echoes, known as the echo-free zone (EFZ). The cause of this feature is unclear, so far lacking direct evidence for its origin. We compare echoes around the EPICA drill site in Dronning Maud Land, Antarctica, with the dielectric properties, crystal orientation fabrics and optical stratigraphy of the EPICA-DML ice core. We find that echoes disappear in the depth range where the dielectric contrast is blurred, and where the coherency of the layers in the ice core is lost due to disturbances caused by the ice flow. At the drill site, the EFZ onset at ~2100 m marks a boundary, below which the ice core may have experienced flow induced disturbances on various scales. The onset may indicate changing rheology which needs to be accounted for in the modeling of ice sheet dynamics.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-15
    Description: We present a new bed elevation dataset for Greenland derived from a combination of multiple airborne ice thickness surveys undertaken between the 1970s and 2011. Around 344 000 line kilometres of airborne data were used, with the majority of this having been collected since the year 2000, when the last comprehensive compilation was undertaken. The airborne data were combined with satellite-derived elevations for non glaciated terrain to produce a consistent bed digital elevation model (DEM) over the entire island including across the glaciated/ice free boundary. The DEM was extended to the continental margin with the aid of bathymetric data, primarily from a compilation for the Arctic. Ice shelf thickness was determined where a floating tongue exists, in particular in the north. The across-track spacing between flight lines warranted interpolation at 1 km postings near the ice sheet margin and 2.5 km in the interior. Grids of ice surface elevation, error estimates for the DEM, ice thickness and data sampling density were also produced alongside a mask of land/ocean/grounded ice/floating ice. Errors in bed elevation range from a minimum of ±6 m to about ±200 m, as a function of distance from an observation and local topographic variability. A comparison with the compilation published in 2001 highlights the improvement in resolution afforded by the new data sets, particularly along the ice sheet margin, where ice velocity is highest and changes most marked. We use the new bed and surface DEMs to calculate the hydraulic potential for subglacial flow and present the large scale pattern of water routing. We estimate that the volume of ice included in our land/ice mask would raise eustatic sea level by 7.36 m, excluding any solid earth effects that would take place during ice sheet decay.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-11
    Description: We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved coverage of data has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6 % greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-04-28
    Description: Radio-echo sounding of the Antarctic and Greenlandic ice sheets often reveals a layer in the lowest hundreds of meters above bedrock more or less free of radio echoes, known as the echo-free zone (EFZ). The cause of this feature is unclear, so far lacking direct evidence for its origin. We compare echoes around the EPICA drill site in Dronning Maud Land, Antarctica, with the microstructural and dielectrical properties of the EPICA-DML ice core. We find that echoes disappear in the depth range, where the coherency of the layers is lost due to disturbances caused by the ice flow. At the drill site, the EFZ onset at ~2100 m marks a boundary, below which the ice core may have experienced flow induced disturbances on various scales. The dating of the climate record becomes increasingly difficult below 1900 m, until correlation with the Dome C record is lost below 2417 m depth. The onset also indicates changing rheology which needs to be accounted for in the modeling of ice sheet dynamics.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-27
    Description: Chinese scientists will start to drill a deep ice core at Kunlun station near Dome A in the near future. Recent work has predicted that Dome A is a location where ice older than 1 million years can be found. We model flow, temperature and the age of the ice by applying a three-dimensional, thermomechanically coupled full-Stokes model to a 70 × 70 km2 domain around Kunlun station, using isotropic non-linear rheology and different prescribed anisotropic ice fabrics that vary the evolution from isotropic to single maximum at 1/3 or 2/3 depths. The variation in fabric is about as important as the uncertainties in geothermal heat flux in determining the vertical advection which in consequence controls both the basal temperature and the age profile. We find strongly variable basal ages across the domain since the ice varies greatly in thickness, and any basal melting effectively removes very old ice in the deepest parts of the subglacial valleys. Comparison with dated radar isochrones in the upper one third of the ice sheet cannot sufficiently constrain the age of the deeper ice, with uncertainties as large as 500 000 years in the basal age. We also assess basal age and thermal state sensitivities to geothermal heat flux and surface conditions. Despite expectations of modest changes in surface height over a glacial cycle at Dome A, even small variations in the evolution of surface conditions cause large variation in basal conditions, which is consistent with basal accretion features seen in radar surveys.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-13
    Description: We present results of a multi-methodological approach to characterize the flow regime of West Ragnhild Glacier, the widest glacier in Dronning Maud Land, Antarctica. A new airborne radar survey points to substantially thicker ice (〉2000 m) than previously thought. With a discharge estimate of 13–14 Gt yr−1, West Ragnhild Glacier thus becomes of the three major outlet glaciers in Dronning Maud Land. Its bed topography is distinct between the upstream and downstream section: in the downstream section (
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-10-24
    Description: This paper studies the evolution of a zone in the Fimbul Ice Shelf that is characterised by large crevasses and rifts west of Jutulstraumen, an outlet glacier flowing into Fimbulisen. High-resolution radar imagery and radio echo sounding data were used to study the surface and internal structure of this rift area and to define zones of similar characteristics. The western rift area is dominated by two factors: a small ice rumple that leads to basal crevasses and disturbs the homogeneity of the ice, and a zone with fibre-like blocks. Downstream of the rumple we found down-welling of internal layers and local thinning, which we explain as a result of basal crevasses due to the basal drag at the ice rumple. North of Ahlmannryggen the ice loses its lateral constraint and forms individual blocks, which are deformed like fibres under shear, where the ice stream merges with slower moving ice masses of the western side. There, the ice loses its integrity, which initiates the western rift system. The velocity difference between the slow moving western part and the fast moving extension of Jutulstraumen produces shear stress that causes the rifts to form tails and expand them to the major rifts of up to 30 km length.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...