ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-06-09
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mooney, T. A., Di Iorio, L., Lammers, M., Lin, T., Nedelec, S. L., Parsons, M., Radford, C., Urban, E., & Stanley, J. Listening forward: approaching marine biodiversity assessments using acoustic methods. Royal Society Open Science, 7(8), (2020): 201287, doi:10.1098/rsos.201287.
    Description: Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats. Given that many animals make sounds, these cues travel efficiently under water, and emerging technologies are increasingly cost-effective, passive acoustics (a long-standing ocean observation method) is now a potential means of quantifying and monitoring marine biodiversity. Properly applying acoustics for biodiversity assessments is vital. Our goal here is to provide a timely consideration of emerging methods using passive acoustics to measure marine biodiversity. We provide a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements. We focused on temperate and tropical seas, where much of the acoustic biodiversity work has been conducted. Overall, we suggest a cautious approach to applying current acoustic indices to assess marine biodiversity. Key needs are preliminary data and sampling sufficiently to capture the patterns and variability of a habitat. Yet with new analytical tools including source separation and supervised machine learning, there is substantial promise in marine acoustic diversity assessment methods.
    Description: Funding for development of this article was provided by the collaboration of the Urban Coast Institute (Monmouth University, NJ, USA), the Program for the Human Environment (The Rockefeller University, New York, USA) and the Scientific Committee on Oceanic Research. Partial support was provided to T.A.M. from the National Science Foundation grant OCE-1536782.
    Keywords: soundscape ; bioacoustics ; richness ; ecosystem health
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-09
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parsons, M., Lin, T.-H., Mooney, T., Erbe, C., Juanes, F., Lammers, M., Li, S., Linke, S., Looby, A., Nedelec, S., Van Opzeeland, I., Radford, C., Rice, A., Sayigh, L., Stanley, J., Urban, E., & Di Iorio, L. Sounding the call for a global library of underwater biological sounds. Frontiers in Ecology and Evolution, 10, (2022): 810156, https://doi.org/10.3389/fevo.2022.810156.
    Description: Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.
    Description: Support for the initial author group to meet, discuss, and build consensus on the issues within this manuscript was provided by the Scientific Committee on Oceanic Research, Monmouth University Urban Coast Institute, and Rockefeller Program for the Human Environment. The U.S. National Science Foundation supported the publication of this article through Grant OCE-1840868 to the Scientific Committee on Oceanic Research.
    Keywords: soundscape ; bioacoustics database ; artificial intelligence ; biodiversity ; passive acoustic monitoring ; ecological informatics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Company of Biologists, 2020. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology (2020): jeb.219683, doi: 10.1242/jeb.219683.
    Description: Black sea bass (Centropristis striata) is an important fish species in both commercial and recreational fisheries of southern New England and the mid-Atlantic Bight. Due to the intense urbanization of these waters, this species is subject to a wide range of anthropogenic noise pollution. Concerns that C. striata are negatively affected by pile driving and construction noise predominate in areas earmarked for energy development. However, as yet, the hearing range of C. striata is unknown, making it hard to evaluate potential risks. This study is a first step in understanding the effects of anthropogenic noise on C. striata by determining the auditory bandwidth and thresholds of this species using auditory evoked potentials (AEPs), creating pressure and acceleration audiograms. These physiological tests were conducted on wild-caught C. striata in three size/age categories. Results showed that juvenile C. striata significantly had the lowest thresholds, with hearing sensitivity decreasing in the larger size classes. Furthermore, Centropristis striata has fairly sensitive hearing relative to other related species. Preliminary investigations into the mechanisms of their hearing ability were undertaken with gross dissections and an opportunistic micro computed tomography image to address the auditory structures including otoliths and swimbladder morphology. Crucially, the hearing range of C. striata, and their most sensitive frequencies, directly overlap with high-amplitude anthropogenic noise pollution such as shipping and underwater construction.
    Description: This work was funded by the Bureau of Ocean Energy Management Environmental Studies Program through Interagency Agreement Number M17PG00029 with the U.S. Department of Commerce, National Oceanic and Atmospheric Administration.
    Description: 2021-05-27
    Keywords: Centropristis striata ; Fish hearing ; Pile driving ; Anthropogenic sound ; AEP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Caiger, P. E., Dean, M. J., DeAngelis, A. I., Hatch, L. T., Rice, A. N., Stanley, J. A., Tholke, C., Zemeckis, D. R., & Van Parijs, S. M. A decade of monitoring Atlantic cod Gadus morhua spawning aggregations in Massachusetts Bay using passive acoustics. Marine Ecology Progress Series, 635, (2020): 89-103, doi:10.3354/meps13219.
    Description: Atlantic cod Gadus morhua populations in the northeast USA have failed to recover since major declines in the 1970s and 1990s. To rebuild these stocks, managers need reliable information on spawning dynamics in order to design and implement control measures; discovering cost-effective and non-invasive monitoring techniques is also favorable. Atlantic cod form dense, site-fidelic spawning aggregations during which they vocalize, permitting acoustic detection of their presence at such times. The objective of this study was to detect spawning activity of Atlantic cod using multiple fixed-station passive acoustic recorders to sample across Massachusetts Bay during the winter spawning period. A generalized linear modeling approach was used to investigate spatio-temporal trends of cod vocalizing over 10 consecutive winter spawning seasons (2007-2016), the longest such timeline of any passive acoustic monitoring of a fish species. The vocal activity of Atlantic cod was associated with diel, lunar, and seasonal cycles, with a higher probability of occurrence at night, during the full moon, and near the end of November. Following 2009 and 2010, there was a general decline in acoustic activity. Furthermore, the northwest corner of Stellwagen Bank was identified as an important spawning location. This project demonstrated the utility of passive acoustic monitoring in determining the presence of an acoustically active fish species, and provides valuable data for informing the management of this commercially, culturally, and ecologically important species.
    Description: Thanks to Eli Bonnell, Genevieve Davis, Julianne Bonell, Samara Haver, and Eric Matzen for assistance in MARU deployments, Dana Gerlach and Heather Heenehan for help in passive acoustic data analysis, and the NEFSC passive acoustics group for useful discussions. Funding for 2007−2012 passive acoustic surveys was provided by Excelerate Energy and Neptune LNG to Cornell University. Fieldwork for 2013−2015 was funded through the 2013−2014 NOAA Saltonstall-Kennedy grant program (Award No. NA14NMF4270027), and jointly funded by The Nature Conservancy, Massachusetts Division of Marine Fisheries, and the Cabot Family Charitable Foundation. Funding for 2016 SoundTrap data was provided by NOAA’s Ocean Acoustics Program (4 Sanctuaries Project).
    Keywords: Atlantic cod ; Passive acoustic monitoring ; Gadus morhua ; Massachusetts Bay ; Spawning aggregations ; Fisheries management
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mooney, T. A., Andersson, M. H., & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources an evolving source and varied effects across a wind farm's lifetime. Oceanography, 33(4), (2020): 82-95, https://doi.org/10.5670/oceanog.2020.408.
    Description: Offshore wind farms are proliferating around the world, and their presence is expected to expand substantially within US waters. Wind farm lifetimes involve 40–50-year commitments, including site surveys, construction, operation, and eventual decommissioning. Because their areas often overlap with essential fisheries habitats, there is a need to understand, mitigate, and manage offshore wind farm impacts on fisheries and ecosystems. Activities during all phases of wind farm lifetimes produce underwater sound, a concern because high noise levels and/or persistent anthropogenic noise can impact marine life in many ways. Here, we review the current understanding of impacts of wind energy activities on fisheries resources, taking into account the varied noise conditions that occur from site survey to decommissioning. For certain portions of wind farm development, such as construction and operation, there is a small amount of available data that allows stakeholders to evaluate impacts for at least some taxa. Yet, we are data deficient for most species’ populations, life stages, and other phases as they relate to wind farm development. Thus, it is difficult to evaluate impacts with any certainty, underscoring the need for further studies to adequately address impacts of offshore wind farms on vulnerable and ecologically and economically important taxa.
    Description: This work was partially funded by a US Bureau of Ocean Energy Management grant to Mooney and Stanley. N. Reneir illustrated several figures.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-15
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-24
    Print ISSN: 1045-2249
    Electronic ISSN: 1465-7279
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-01
    Print ISSN: 0308-597X
    Electronic ISSN: 1872-9460
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Political Science , Law
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-16
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-11-07
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...