ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 8 (1987), S. 8-15 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Impact and flexural creep testing were conducted at temperatures between -22°F (-30°C) and 250°F (121°C) to evaluate and compare the end-use performance of continuous long glass fiber-reinforced thermoplastic sheet composites to that of short glass fiber-reinforced thermoplastics. The matrices studied consisted of amorphous (polycarbonate and acrylonitrile-butadiene-styrene) and semicrystalline (polypropylene) polymers. Data were obtained from both injection-molded specimens (short fibers), and from specimens machine-cut from compression-molded test panels (continuous long fibers). The creep results of this study demonstrated that continuous long fibers are more efficient than short fibers in reinforcing the thermoplastic matrices, resulting in enhanced load-bearing ability at elevated temperatures. The addition of continuous long glass fibers to the thermoplastic matrices led to a significant increase in the notched Izod impact strengths between the temperatures of -22°F (-30°C) and 77°F (25°C), and only slight improvement in the drop-weight impact strengths. The lack of correlation between notched Izod impact and drop-weight strengths is largely due to the difference in crack propagation and fracture initiation energies. Results of the Rheometrics instrumented impact test indicated a higher total fracture energy for the long glass-reinforced thermoplastic sheet composites than for the short glass-reinforced injection-molded thermoplastics. The decreased ease of crack propagation in thermoplastic sheet composites is associated with the high energy-absorbing mechanisms of fiber debonding and interply delamination. The results of this study point to the significant property improvement of continuous long fibers vs. short fibers. The creep strength of short fiber-reinforced thermoplastics are greatly affected by the nature of the stress transfer which in turn is influenced by the critical fiber length and temperature, which is not the case for the long fiber-reinforced thermoplastic sheet composites. Long fibers dramatically increase the impact resistance of thermoplastics. The retention of toughness at low temperatures coupled with elevated temperature performance greater than similar short glass fiber-reinforced thermoplastics effectively extends the capabilities of thermoplastic sheet composites at both temperature extremes.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-07
    Print ISSN: 0957-4484
    Electronic ISSN: 1361-6528
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4661-PT-1 , NAS 1.26:4661-PT-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4661-PT-2 , NAS 1.26:4661-PT-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.
    Keywords: Communications and Radar
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...