ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
  • 2
    Publication Date: 2015-12-03
    Description: Myeloproliferative neoplasms (MPN) are characterized by chronic proliferation of myeloid cells, extramedullary hematopoiesis and occasional leukemic transformation. Mutations in JAK2, CALR and MPL have been established as drivers of myeloproliferative phenotype, but their roles in disease progression with clonal expansion remain unclear. In addition, studies have shown mutations in epigenetic modifiers including TET2, DNMT3A, ASXL1 and EZH2, and aberrant expressions of microRNAs in MPN, but downstream of these changes is also largely unknown. Recently, we showed high expression of HMGA2 mRNA partly correlated with reduced microRNA let-7 in granulocytes of patients with MPN, including 100% patients with primary myelofibrosis (MF) and 20% polycythemia vera and essential thrombocythemia (Harada-Shirado et al, Brit J Haematol, 2015). In mice, loss of epigenetic modifiers such as BMI1 and EZH2, along with the Arf/Ink4a knockout (Oguro et al, J Exp Med, 2012) or the JAK2 V617F (Sashida et al, ASH, 2013), leads to overexpression of HMGA2 with accelerating MPN. We have generated transgenic (Tg) mice of Hmga2 cDNA with truncated 3'UTR (ΔHmga2) lacking binding sites of let-7 thatrepresses expression of HMGA2 (Ikeda et al, Blood, 2011). Δ Hmga2 mice overexpress HMGA2 and develop MPN-like disease, and represent a clonal advantage in competitive repopulations with serial bone marrow (BM) transplants (BMT). Here, to clarify if HMGA2 affect JAK2 V617F+ hematopoiesis, we crossed Δ Hmga2+/- mice with JAK2 V617F+/- Tg mice (Shide et al, Leukemia, 2008). Δ Hmga2-/-JAK2 V617F-/- wild type (WT), Δ Hmga2+/-JAK2 V617F-/- (Δ Hmga2 -Tg), Δ Hmga2-/-JAK2 V617F+/- (JAK2 V617F-Tg) and Δ Hmga2+/-JAK2 V617F+/- (double-Tg) mice were born at expected Mendelian ratios and we could analyze 5 - 6 of each. At 3 months old, leukocytosis, thrombocytosis, anemia and splenomegaly were most severe in double-Tg compared with JAK2 V617F-Tg or Δ Hmga2 -Tg mice. Relative to WT, peripheral leukocyte and platelet counts were nearly 16- and 4-fold higher in double-Tg, while 3- and 2-fold higher in JAK2 V617F-Tg mice, respectively. Mean spleen weights were 0.067, 0.10, 0.83 and 2.8 g in WT, Δ Hmga2 -Tg, JAK2 V617F-Tg and double-Tg mice, while BM cell counts were 2.4, 2.8, 0.4 and 1.2 x 107/femur, respectively. However, JAK2 V617F-Tg and double-Tg equally showed MF whereas no MF was detected in WT and DHmga2-Tg, suggesting that HMGA2 partly recovers cellularity in fibrotic BM. In the absence and presence of JAK2 V617F, HMGA2 augments lineage- Sca1+ Kit+ cells (WT: Δ Hmga2-Tg: JAK2 V617F-Tg: double-Tg= 0.17%: 0.19%: 0.17%: 0.27% in BM cells), endogenous erythroid colonies (1: 11: 13: 21 CFU-E/104 BM cells) and CD71+ Ter119+ erythroblasts (23%: 29%: 5.7%: 10% in BM and 2.0%: 4.4%: 7.9%: 16% in spleen cells), indicating HMGA2 contributes to expansion of hematopoietic stem/progenitor cells (HSPC) and erythroid commitment in JAK2 V617F+ hematopoiesis. Most Δ Hmga2-Tg and JAK2 V617F-Tg survived for over one year, but all double-Tg mice died within 4 months after birth due to severe splenomegaly and MF with no acute leukemia. To study the effect of HMGA2 on JAK2 V617F+ HSPC activity, we performed BMT with 0.25 x 106 Ly5.2+Δ Hmga2-Tg, JAK2 V617F-Tg or double-Tg cells with 0.75 x 106 Ly5.1+ competitor WT cells to lethally irradiated Ly5.1+ WT mice. Proportions of Ly5.2+ cells were higher in recipients of Δ Hmga2 -Tg than double-Tg cells, while JAK2 V617F-Tg cells were almost rejected at 8 weeks after BMT. To confirm role of HMGA2 without let-7 repression in JAK2 V617F+ hematopoiesis, we performed another BMT with 1 x 104 KIT+ cells of JAK2 V617F-Tg mice transduced with retroviral vector of Hmga2 with each let-7 -site-mutated full-length 3'UTR (Hmga2-m7) to sublethally irradiated WT mice. Recipients of JAK2 V617F-Tg cells with Hmga2-m7 developed MPN-like disease, whereas donor cells were rejected in recipients of JAK2 V617F cells with empty vector. In conclusion, HMGA2 may play a crucial role in hematopoiesis harboring JAK2 V617F by expanding HSPC, leading to disease progression. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-15
    Description: Background Adult T-cell leukemia/lymphoma (ATL) is an aggressive peripheral T cell neoplasm caused by human T-cell lymphotropic virus type I with very poor prognosis. The relationship between chemotherapy dose intensity and clinical outcome of ATL in clinical practice remains unclear. Patients and methods To elucidate the clinical characteristics and outcome of ATL patients, we retrospectively analyzed 118 patients diagnosed with ATL at 7 institutes in Miyazaki Prefecture, Japan from 2010 to 2012. There were 67 males and 51 females. The median age of the patients was 70 years (range 44–92). Subtypes included acute- (n=85) and lymphoma-type (n=33). One hundred one patients were treated with one of the below combination chemotherapy: (1) VCAP-AMP-VECP (LSG15); (2) CHOP (including pirarubicin (THP)-COP); and (3) non-LSG15, non-CHOP regimen. The prognostic value of the recently proposed prognostic index for ATL, namely ATL-PI (Katsuya et al. J Clin Oncol. 2012), was evaluated in this cohort. Relative dose intensity (RDI) during the first 12 weeks of therapy was calculated based on the standard regimen. Average RDI (ARDI) for LSG15 and CHOP was calculated. Results The median survival time (MST), 1- and 2-years overall survival (OS) rates of the entire cohort were 8.5 months, 35.3% and 23.0%, respectively. MSTs of patients less than 70 years and patients 70 years or older were 11.8 and 5.7 months, respectively (p=0.03). MSTs among all age groups for acute- and lymphoma- type were 8.3 and 10.0 months, respectively (p=0.445). Although ATL-PI could efficiently discriminate high-risk patients, it failed to separate the intermediate- and low-risk patients in this cohort. As almost all patients in this cohort were stage III or IV, ATL-PI was modified to exclude the Ann Arbor stage from variables. This modified ATL-PI could stratify our cohort into three distinct risk groups. MSTs were 3.9, 10.9, and 18.1 months for patients in high, intermediate, and low risk groups, respectively (P 〈 0.01). Among this cohort, 38 patients have received LSG15 and 47 patients received CHOP. Variables known to affect outcome were similar in both groups, except the age. MSTs were 11.5 and 8.1 months for patients treated with LSG15 and CHOP, respectively (p=0.206). As the median age of CHOP group is about 10 years greater than that of LSG15 group, we examined the MST in each therapy group according to the age. The MSTs for less than 70 years old were 11.7 and 21.9 months for patients treated with LSG15 and CHOP, respectively (p=0.311). Similarly, the MSTs for 70 years or older were 8.6 and 5.5 months for patients treated with LSG15 and CHOP, respectively (p=0.142). In practice, we conclude that CHOP is still a standard therapy for ATL. We next examined the RDI in each therapy groups and its relationship with OS. During the first 12 weeks, 73.7% of patients treated with LSG15 received ≥50% of planned DI, whereas 50.0% of patients treated with CHOP received ≥50% of planned DI. MSTs were significantly longer in patients treated with higher ARDI (≥50%) than that in patients with lower ARDI (
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-11-16
    Description: An acquired JAK2 V617F mutation has been detected in up to 90% of patients with polycythemia vera (PV) and in a sizeable proportion of patients with other myeloproliferative disorders such as essential thrombocythemia (ET) and idiopathic myelofibrosis (IMF). However, how a single mutation may be responsible for such different clinical phenotypes is unknown. Mice transplanted with bone marrow cells in which V617F JAK2 was retrovirally expressed developed PV-like features, but not ET or IMF. To address the contribution of this mutation to the pathogenesis of these three MPDs, we generated transgenic mice expressing V617F JAK2 driven by the murine H2Kb promoter. We established two lines. The expression of V617F JAK2 mRNA in bone marrow cells was 0.45 and 1.35 that of endogenous wild-type JAK2 in the two lines. One line showed leukocytosis after 4 months of age, with a predominance of granulocytes. Among 43 mice, examined after 3 months of age, 8 (19%) showed polycythemia and 14 (33%) showed thrombocythemia. Two polycythemia cases also showed thromobocytosis. The other line showed extreme leukocytosis and thromobocytosis at one month of age. The leukocytosis progressed as the animals aged, but the thrombocytosis tended to resolve at 8 months. They showed anemia that means Hb value from 9 to 10 g/dL at one month old. Myeloid cells and megakaryocytes were predominant in the bone marrow of these animals, and splenomegaly with myeloid cell and megakaryocyte invasion was observed. We conclude that in vivo expression of V617F JAK2 results in ET-like, IMF-like, and PV-like disease.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-15
    Description: Polycomb group proteins are transcriptional repressors that epigenetically regulate transcription via histone modifications. There are two major polycomb-complexes, the Polycomb Repressive Complexes (PRC1 and PRC2). PRC2 contains SUZ12, EED, and EZH2 that catalyze the trimethylation of histone H3 at lysine 27 (H3K27me3) and silence target-genes expression. EZH2 is generally thought to act as an oncogene in lymphoma by silencing tumor suppressor genes through H3K27me3 modifications. However, loss-of-function mutations of EZH2 have been found in myeloid malignancies such as MDS and MPN including primary myelofibrosis (PMF). In a recent study, EZH2 mutations were independently associated with shorter survival in PMF patients, suggesting that EZH2 functions as a tumor suppressor in PMF. Although JAK2V617F mutant is found in approximately 50% of PMF patients, it remains obscure whether the presence of JAK2V617F mutant predicts survival of PMF patients, and the functional contribution of JAK2V617F to the development of PMF has not been fully delineated. JAK2 has been shown to directly phosphorylate H3Y41 (H3Y41p) and reduce HP1a binding, thereby activating expression of target genes. However, it is unknown how JAK2V617F epigenetically alter expression of target genes in the development of PMF. Given that JAK2V617F mutation is significantly associated with EZH2 mutations in PMF patients, in order to understand how EZH2 mutations contribute to the pathogenesis of JAK2V617F-positive PMF, we generated a novel mouse model of PMF utilizing H2K-JAK2V617F transgenic mice and Ezh2 conditional knockout mice. We first harvested 5x106 bone marrow cells from tamoxifen-inducible Cre-ERT;Ezh2wild/wild (WT), Cre-ERT;Ezh2flox/flox (Ezh2 cKO), JAK2V617F TG/Cre-ERT;Ezh2wild/wild (JAK2 TG) and JAK2V617F TG/Cre-ERT;Ezh2flox/flox (JAK2 TG/Ezh2 cKO) mice, and then transplanted into lethally irradiated recipient mice. At 4 weeks post transplantation, we deleted Ezh2 via administration of tamoxifen, and observed disease progression until 9 months post transplantation. WT and Ezh2 cKO mice did not develop myeloid malignancies. While all 11 JAK2 TG mice died due to PMF-like disease after a long latency as previously reported, 10 out of 10 JAK2 TG/Ezh2 cKO mice immediately developed PMF and died by approximately 50 days post-deletion of Ezh2. JAK2 TG/Ezh2 cKO mice showed a significantly shorter median survival than did JAK2 TG mice (36.5 days versus 245 days, p2-fold) of 1044 and 861 genes, respectively, JAK2 TG/Ezh2 cKO LSKs showed up-regulation (〉2-fold) of more genes (1306), compared to WT LSKs. As expected, H3Y41p and H3K27me3 target genes were significantly upregulated in JAK2 TG/Ezh2 cKO LSKs, whereas H3K27me3 targets were significantly repressed in JAK2 TG LSKs, consistent with the tumor suppressor role of Ezh2 in PMF. We are now working to understand how dysregulated genes are involved in the progression of JAK2V617F-induced PMF after deletion of Ezh2. In conclusion, we have successfully established the progressive PMF in mice reconstituted with Ezh2 null cells expressing JAK2V617F mutant, and demonstrated that Ezh2 functions as a tumor suppressor in this context. This model can be utilized for innovating new therapies for PMF. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-11-20
    Description: Abstract 1901 Poster Board I-924 Leukocyte alkaline phosphatase (LAP) is considered as a neutrophil activation marker. The level of LAP is quantitated as the LAP score. It is well known that patients with chronic myelogenous leukemia (CML) usually have low LAP scores, whereas those with BCR-ABL negative chronic myeloproliferative disorders (MPD) have elevated LAP scores. In CML patients, the premature release of granulocytes from the bone marrow into the peripheral blood is considered as the cause of low LAP scores. However, the reason for elevated LAP scores in BCR-ABL negative MPD patients has been unclear. An acquired JAK2V617F mutation is observed in most patients with BCR-ABL negative MPD. It has been shown that the JAK2V617F mutation induces constitutive activation of its downstream signaling pathways such as STAT3/STAT5, Ras/MAPK and PI3K pathways. We speculated that an elevated LAP score might be due to the activation of Jak2 downstream pathways through the JAK2V617F mutation. We analyzed LAP expression in BCR-ABL negative MPD patients. JAK2V617F homozygous patients had higher LAP expression than JAK2V617F heterozygous or negative patients. AG490, the Jak2 inhibitor, was shown to significantly decrease the LAP expression in neutrophils of JAK2V617F positive patients. The myeloid cell line NB4 was transfected with the JAK2V617F mutation and a wild-type Jak2 using lentivirus vectors. It was observed that the JAK2V617F mutation, but not wild-type Jak2, enhanced cell proliferation. Then the LAP expression in NB4 cells was evaluated after these cells were differentiated by all-trans retinoic acid and granulocyte colony-stimulating factor. It was observed that the JAK2V617F mutation, but not wild-type Jak2, increased LAP expression. Next, we examined which of the Jak2 downstream pathways played a major role in increasing LAP expression and prompting cell proliferation. By using MEK1/2 inhibitor U0126, PI3K inhibitor LY294002, STAT3 siRNA and STAT5 siRNA, we demonstrated that the JAK2V617F mutation primarily used the STAT3 pathway to increase LAP expression. On the other hand, the JAK2V617F mutation used the STAT5, the Ras/MAPK and the PI3K pathways, but not the STAT3 pathway, to prompt proliferation of NB4 cells. In conclusion, we obtained direct evidence that the JAK2V617F mutation induced elevation of LAP scores via the STAT3 pathway, and prompted proliferation of NB4 cells via the STAT5, the Ras/MAPK and the PI3K pathways. Our findings showed the possibility that the JAK2V617F mutation might use specific downstream pathways depending on various phenotypic manifestations of BCR-ABL negative MPD. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-15
    Description: A single somatic mutation, V617F, in Janus kinase 2 (JAK2) is one of the causes of myeloproliferative neoplasms (MPN), including primary myelofibrosis, and the mutant kinase JAK2V617F is a therapeutic target in MPN. However, inhibition of wild-type JAK2 (JAK2WT) can decrease the red blood cell (RBC) or platelet count. Therefore, a JAK2 inhibitor that produces a smaller reduction in the RBC and platelet counts in the therapeutic window would have clinical benefit. NS-018 is a potent and selective inhibitor of JAK2 and Src-family kinases which is currently in an early-phase clinical trial for MPN. To compare the inhibitory effect of NS-018 on JAK2WT and JAK2V617F in the cell, we assessed the antiproliferative activity of NS-018 against Ba/F3 cells expressing murine JAK2WT or JAK2V617F. NS-018 suppressed the growth of Ba/F3-JAK2V617F cells with an IC50 value of 470 nM, whereas it suppressed the growth of Ba/F3-JAK2WT cells stimulated with IL-3 with an IC50value of 2000 nM. Thus, NS-018 showed 4.3-fold selectivity for Ba/F3-JAK2V617F over Ba/F3-JAK2WT cells (V617F/WT ratio). Other JAK2 inhibitors also showed selectivity for Ba/F3-JAK2V617F over Ba/F3-JAK2WT cells, though their selectivity was lower. For example, INCB018424 (ruxolitinib) and TG101348 showed V617F/WT ratios of 2.0 and 1.5, respectively. Among the eight JAK2 inhibitors tested, NS-018 showed the highest selectivity for JAK2V617F cells. NS-018 also inhibited erythroid colony formation in JAK2V617F transgenic mice at significantly lower concentrations than in wild-type mice. To assess the ability of NS-018 to selectively inhibit JAK2V617F-harboring cells in vivo, we established a JAK2V617F bone marrow transplantation (BMT) mouse model. NS-018 was administered by oral gavage twice a day for 40 days at a dose of 50 mg/kg. When assessment was carried out 50 days after the start of the study, NS-018 was found to have significantly prolonged the survival of JAK2V617F BMT mice, decreased their splenomegaly and restored their disrupted splenic architecture. NS-018 also partially suppressed bone marrow fibrosis in JAK2V617F BMT mice. All vehicle-treated mice that had survived to the study endpoint had mild-to-moderate reticulin fibrosis, whereas all mice treated with NS-018 had slight-to-little reticulin fibrosis, except for one mouse with mild fibrosis. Although vehicle-treated JAK2V617F BMT mice showed marked leukocytosis, NS-018 treatment achieved a 95% suppression of this increase. In spite of the marked effects of NS-018 in JAK2V617F BMT mice described above, NS-018 treatment had not decreased the RBC or reticulocyte count after 50 days of administration. JAK2V617F BMT mice showed a 78% decrease in the platelet count compared with control mice, and NS-018 treatment did not further decrease the count. To better understand the ability of NS-018 to preferentially inhibit the mutated form of JAK2, we explored the X-ray co-crystal structure of NS-018 bound to activated JAK2 and focused on the flipped carbonyl group of Gly933, which is located immediately N-terminal to the DFG (Asp-Phe-Gly) motif in the activation loop of JAK2. We identified two kinds of hydrogen-bonding interactions between NS-018 and the carbonyl group of Gly993: water-mediated hydrogen bonding involving a nitrogen atom of NS-018 and a CH•••O hydrogen bond involving an aromatic CH of NS-018. The unique mode of binding of NS-018 to activated JAK2 provides a plausible explanation for its JAK2V617F selectivity. In summary, NS-018 preferentially inhibited the growth of JAK2V617F-harboring cells over JAK2WT-harboring cells. NS-018 was also effective against leukocytosis, splenomegaly, and bone marrow fibrosis, and prolonged survival in JAK2V617F BMT mice with no reduction in the RBC or platelet counts. These characteristics of NS-018 may be explained at least in part by its unique mode of binding to the activated form of JAK2. NS-018 may have therapeutic benefit for MPN patients in virtue of its simultaneous satisfaction of the two requirements of efficacy and reduced hematologic adverse effects. Disclosures: Nakaya: Nippon Shinyaku: Employment. Naito:Nippon Shinyaku: Employment. Niwa:Nippon Shinyaku: Employment. Horio:Nippon Shinyaku: Employment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-20
    Description: Abstract 1921 Poster Board I-944 Background: Janus kinase 1 (JAK1) plays a critical role in lymphocyte proliferation and differentiation. Somatic JAK1 mutations are found in 18% of adult precursor T acute lymphoblastic leukemias (T-ALL). Some of the mutations were shown to induce the phosphorylation of JAK1 and STAT5 and lead to cytokine-independent proliferation. These data suggest that dysregulation of JAK1 can be involved in the development or progression of T-ALL (Flex et al. J Exp Med. 2008;205:751-758). Adult T-cell leukemia/lymphoma (ATLL) is a type of T-cell neoplasm, and the activation of JAK/STAT is sometimes observed in the tumor cells. Therefore, we investigated JAK1 mutations in ATLL patients. Patients and methods: Twenty Japanese ATLL patients whose percentage of peripheral abnormal lymphocytes was greater than 30% total cell count were sequentially enrolled into the study from 2000 to 2007. Diagnosis of ATLL was made on the basis of clinical features and laboratory characteristics. All cases tested positive for the serum anti-HTLV-1 antibody. The diagnosis was confirmed by observing monoclonal insertion of the HTLV-1 viral genome into leukemia cells by Southern blot hybridization. Peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved at -80°C. These PBMCs were thawed and genomic DNA was isolated using standard protocol. The entire coding sequence of the JAK1 gene (exons 2 through 25) was amplified by the polymerase chain reaction (PCR) method. The sequence of PCR primers were kindly provided by Dr. Marco Tartaglia (Istituto Superiore di Sanità, Roma, PhD). The nucleotide sequences were determined by fluorescent dye chemistry sequencing and analyzed by sequencing analysis software. By referencing the assembled sequence in the Ensembl genome database, the presence of homozygous mutations was first checked and then candidates for heterozygous mutations or single nucleotide polypeptides (SNPs) on each allele were screened by comparing the ratio of different bases calculated with the height of the peaks seen from sequencing to the reference genome when the ratio was between 0.15 and 1.0. Result: The percentage of abnormal lymphocytes ranged from 30-90%, and the mean value was 55.4%. The mean value of WBC and lymphocyte number was 40.5×109/L and 33.4×109/L, respectively. The mean value of LDH, Ca2+ or sIL-2R was 609 IU/L, 11.4 mg/dL, or 54748 U/mL, respectively. According to Shimoyama criteria (Shimoyama et al. Br J Haematol. 1991;79:428-437), 19 cases were diagnosed as acute-type ATLL, and one case was diagnosed as chronic-type ATLL. The surface markers of all but one abnormal PBMC were CD3+CD4+CD8-CD25+. In that one exception, loss of CD4 expression was observed. We examined the entire coding sequence of the JAK1 gene in 20 ATLL patients and identified no nonsynonymous or nonsense mutations and five types of silent substitutions in 12 cases. All silent substitutions were synonymous SNPs, as determined from referencing the base sequence in the Ensembl genome database. In the ATLL patients examined, the genotype frequency (%) is c546-AA/AG/GG, 97.5/2.5/0; c1590-CC/CT/TT, 97.5/2.5/0; c2049-CC/CT/TT, 50/50/0; c2097-CC/CG/GG, 95/5/0; c2199-AA/AG/GG, 60/40/0. There is no statistical difference in genotype frequency pattern of these SNPs, between the Japanese ATLL patients examined and the general Asian population on the Ensembl database. Conclusion: Mutations in the coding region of JAK1 do not associate with either activation of the JAK/STAT pathway or leukemogenesis in ATLL. We only examined the coding region of JAK1, and the regulatory region of JAK1 remains to be investigated. Further investigation including downstream signaling molecules and inhibitory molecules in the JAK/STAT signaling pathway is necessary to clarify the mechanism contributing to the leukemogenesis of ATLL. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-03
    Description: Adult T-cell leukemia/lymphoma (ATL) is a distinct subtype of peripheral T-cell neoplasms associated with human T-cell leukemia virus type-1 retrovirus. ATL includes a heterogeneous group of patients in terms of pathological and clinical features as well as prognosis, suggesting the presence of underlying molecular pathogenesis that could explain such heterogeneity among patients. Recently, we performed an integrated molecular analysis of a large number of ATL cases and delineated a comprehensive registry of gene mutations and other genetic/epigenetic lesions in ATL. In this study, we investigated possible correlations between these genetic/epigenetic lesions and clinical/pathological phenotypes in a large set of ATL patients, with a special focus on the impact of mutations and copy number alterations (CNAs) on clinical outcome. We analyzed a total of 361 ATL samples, including acute (n = 192), lymphoma (n = 66), chronic (n = 89), and smoldering (n = 14) subtypes, for recurrent mutations and CNAs. Each subtype had characteristic genetic/epigenetic features, suggesting a distinct molecular pathogenesis therein. Aggressive (acute and lymphoma) subtypes were characterized by a higher number of mutations and CNAs including focal amplifications/deletions, hyperploid status, and CIMP phenotype, compared with indolent (chronic and smoldering) tumors. Two mutations (TP53 and IRF4) and eight focal deletions involving 1p13 (CD58), 6p21 (HLA-B), 9p21 (CDKN2A), 10p11 (CCDC7), 13q32 (GPR183), 16q23 (WWOX), 17p13 (TP53), and 19q13 (CEBPA), were more common in aggressive ATL than in indolent ATL. In contrast, showing a similar mutational distribution to those found in large granular lymphocytic leukemia, STAT3 mutations were characteristic of the indolent diseases. Gene set enrichment analysis of RNA-seq data showed a significant enrichment of MYC pathway and genes regulating cell cycle and DNA repair in upregulated genes in aggressive ATL. Next, we assessed the impact of mutations and CNVs on prognosis among 215 ATL cases, for which survival data were available. In the entire cohort, mutation in CCR4 and IRF4, focal amplification in 9p24 (CD274) and 14q32 (BCL11B), and focal deletion in 9p21 (CDKN2A) were found to be significant predictors of poor overall survival, after adjustment for disease subtype and age. Multivariate analysis revealed that disease subtype (aggressive vs. indolent) was the most significant predictor of clinical outcome in ATL. Subsequent multivariate analysis according to disease subtype showed that within the patients with aggressive ATL, older age (≥ 70 years), CCR4 mutations, and 9p24 amplification were independently associated with an adverse outcome. Based on the number of the risk factors they owned, patients with aggressive ATL were classified into three categories showing marked difference in 3-year overall survival (OS) (P 〈 0.001): those with no risk factors (OS, 32%), with one risk factor (18%), and with two or more (0%). Among the patients with indolent ATL, we found IRF4 and TP53 mutations, 9p24 amplification, and deletions in 9p21 and 10p11 were independently associated with reduced survival. Interestingly, these alterations, except for 9p24 amplification, were also identified as genes more frequent in aggressive ATL. More importantly, based on these risk factors, the patients with indolent ATL can be classified into two categories showing very different prognostic profiles: patients with no risk factors (OS, 89%) and those with one or more risk factors (21%) (P 〈 0.001, HR = 16.8, 95% CI:5.4-52.5), suggesting that patients with indolent ATL having a genetic feature of the aggressive subtypes might genetically and biologically represent a distinct subset, which should be better managed as having an aggressive disease. Among these poor prognostic factors, 9p24 amplification and CCR4 mutation are especially interesting, because these lesions might be plausible targets of available agents, including anti-PD1/PD-L1 and anti-CCR4 antibodies. In conclusion, based on the comprehensive genetic profiling, we demonstrated that the known subtypes of ATL can be further classified into genetically and biologically distinct subsets of tumors characterized by discrete sets of genetic lesions and substantially different prognosis. Our results suggest that molecular profiling can improve the prediction of prognosis in ATL patients and better guide therapy. Disclosures Tobinai: Gilead Sciences: Research Funding. Miyazaki:Shin-bio: Honoraria; Chugai: Honoraria, Research Funding; Sumitomo Dainippon: Honoraria; Celgene Japan: Honoraria; Kyowa-Kirin: Honoraria, Research Funding. Watanabe:Daiichi Sankyo Co., Ltd.: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-02
    Description: Calreticulin (CALR) exon 9 mutations were reported in about two-thirds of JAK2 or MPL mutation negative ET and PMF patients. The mutations cause frameshifts that result in proteins with novel C-terminus.Retrovirus-mediated gene transfer into cell lines and mouse bone marrow (BM) cells is a common technique, but the expression level is very high compared to the physiological expression.We investigated the effects of physiological expression of mutant CALR using CRISPR/Cas9 gene editing techniques for cell lines, and as for the mouse model, we generated a transgenic mice (TG) expressing human CALR del52 mutant. We used two human cell lines expressing MPL: human acute megakaryoblastic leukemia cell line CMK11-5 which expressed endogenous MPL, and F-36P-MPL cell line which was generated by introducing MPL to GM-CSF-dependent erythroleukemia cell line F-36P. Plasmids coexpressing hCas9 and single-guide RNA were prepared by ligating oligonucleotides (5'-CACCGACAAGAAACGCAAAGAGGAGG-3', 5'-AAACCCTCCTCTTTGCGTTTCTTGTC-3') for the target sequence of human CALR exon 9 into pX330. The plasmids were introduced with a electroporator to each of the cell lines. After limiting dilution cloning, we identified cell lines which have indel mutation at the target site. We produced two types of CMK11-5 subline knocked in a CALR mutation, namely CALR del25 CMK cells and CALR del25/del17 CMK cells, respectively. The former lacks 25 bases in one CALR allele, causing a frameshift that results in a protein resembling human CALR mutant, while the latter lacks an additional 17 bases in another allele in CALR exon 9 and induces a frameshift that causes a deletion in CALR exon 9. Both kinds of CALR mutant CMK11-5 cells showed increased cell proliferation compared to WT cells. We also produced one type of F-36P-MPL subline, CALR del1/ins1 F-36P-MPL cells which had 1 base deletion in one CALR allele resembling human mutation and 1 base insertion in another allele. Though the growth of this subline in the presence of GM-CSF was comparable to WT cells, it showed GM-CSF independent autonomous cell growth. We generated TG mice expressing human CALR del52 mutant driven by the murine H2Kb promoter. We compared the expression level of human CALR mRNA in TG BM cells with the expression of endogenous WT CALR in human cell lines (CMK11-5, F-36P-MPL, CHRF288) using Rn18s as an endogenous control. The expression of human CALR in TG BM was approximately 0.6 times that of endogenous WT CALR in human cell lines, and the physiological expression level was obtained. They exhibited thrombocytosis, with platelet (PLT) counts as high as 2,000 x 109/L. Leukocyte number and the proportion of granulocytes and T and B lymphocytes, were comparable to WT mice. CALR mutation had no impact on Hb level or spleen weight. There was a striking difference in the number of megakaryocytes (Mgks), which was 2-fold higher in BM from TG mice than in WT mice. The TG Mgks were also more mature, with larger diameter, and contained higher number of alpha-granules compared to WT cells. In one year of observation, there is no fibrosis in BM. These observations showed that TG developed human ET-like disease. The survival of TG mice was comparable to that of WT mice. The disease phenotype was transplantable into WT recipient mice. To characterize in detail the impact of MPNs induced by the CALR del52 mutant, we evaluated the frequencies of HSCs and progenitors in BM. The frequency of both LT-HSC and ST-HSC in BM was higher inTG mice compared to WT mice. The frequencies of progenitors (CMP, MEP, and MKP) were also greater in BM from TG mice than from WT mice. However, BM cells did not have enhanced replating capacity. We next examined whether or not ruxolitinib (RUX) treatment ameliorated thrombocytosis in TG mice. Either 90 mg/kg bid of RUX or vehicle was administrated to TG mice for 4 weeks.TG mice treated with vehicle showed a mean 16% increase in PLT count during the treatment period, probably due to the disease progression. RUX treatment attenuated the increase in the number of PLTs in TG mice by a mean of 22%, but the overall count was still higher than that in WT mice. BM sections showed that RUX reduced the Mgks number in TG. In summary, physiological expression of CALR mutant increases cell growth and cytokine independency in human cell lines expressing MPL, and develops ET in mice. RUX therapy attenuated the increased numbers of peripheral blood PLTs and BM Mgks, and ameliorated CALR mutation-induced ET. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...