ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 239-247 
    ISSN: 0006-3592
    Keywords: metabolic design analysis ; gene engineering ; biochemical reaction networks ; modular/top-down approach ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A biotechnological aim of genetic engineering is to increase the intracellular concentration or secretion of valuable compounds, while making the other concentrations and fluxes optimal for viability and productivity. Efforts to accomplish this based on over-expression of the enzyme, catalyzing the so-called “rate-limiting step,” have not been successful. Here we develop a method to determine the enzyme concentrations that are required to achieve such an aim. This method is called Metabolic Design Analysis and is based on the perturbation method and the modular (“top-down”) approach - formalisms that were first developed for the analysis of biochemical regulation such as, Metabolic Control Analysis. Contrary to earlier methods, the desired alterations of cellular metabolism need not be small or confined to a single metabolite or flux. The limits to the alterations of fluxes and metabolite concentrations are identified. To employ Metabolic Design Analysis, only limited kinetic information concerning the pathway enzymes is needed. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59: 239-247, 1998.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...