ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 4 (1990), S. 1-22 
    ISSN: 1573-0417
    Keywords: sulfate ; carbon ; nitrogen ; hydrogen ; organic matter ; enrichment factor ; lake sediments ; paleolimnology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract This paper discusses the use of S as a paleolimnological tracer of limnetic sulfate concentration. A positive relationship (p〈0.05) was found between limnetic sulfate and sediment S concentrations for the Great Lakes, English Lakes, and lakes from the Adirondack and Northern New England regions. There is a positive correlation (p〈0.05) between C and S concentration in sediment across all regions studied. The importance of C in affecting S content in sediment was also examined by a series of cores taken at different water depths in Big Moose Lake (Adirondacks). There was a strong relationship between C and S among cores with sediment from deeper water having higher C and S concentrations (r 2=0.99). Sulfur from the shallower cores had greater concentrations of chromium-reducible S (pyrite), while cores from deeper waters had a greater proportion of organic S fractions including C-bonded S and ester sulfates. For assessing historical changes in S accumulation in sediments, enrichment factors were calculated for the PIRLA lakes. Pre-1900 net sediment accumulation rates of S were very similar across all regions. Sulfur enrichment was greatest in Adirondack sediment which had total post-1900 S accumulation of 1.1 to 7.4 times pre-1900 S accumulation. Sediment from Northern New England (NNE) generally had lower S concentration than Adirondack sediments and S enrichment factors ranged from 1.2 to 2.1. Sediment from the Northern Great Lakes States region had similar S concentration and distribution with depth to NNE sediment. In two Northern Florida lakes, sediment showed little variation in S concentration with depth, but in two other lakes from the same region, there was higher S concentration in deeper layers. Lakes which had the greatest enrichment factors also exhibited the most marked changes in C:S ratios. Ratios of C:N showed little variation (10.6 to 26.1) among the PIRLA lakes. A first order model indicated slow decomposition within these organic rich sediments. Elemental concentrations and ratios of sediment from a variety of lakes and reservoirs were complied. Maximum and minimum elemental ratios for all the data were 28 to 8.1 for C:N, 0.81 to 0.11 for C:H, and 675 to 12.5 for C:S, respectively. For the C:S ratios in all regions except the Great Lakes, the maximum ratio was less than 231. Both the maximum and minimum amount of N and H concentration of organic matter is related to biotic processes. The minimum concentration of S is regulated not only by nutrient demands but also by non-assimilatory processes. Sulfur incorporation into sediments is a function of a complex of factors, but limnetic sulfate concentration and organic matter content play a major role in regulating the S content of sediment. Further quantification of S incorporation pathways will aid in the paleolimnological interpretation of sediment S profiles. Such information is also important in assessing how S sediment pools will respond to decreases in limnetic sulfate concentration which may occur with decreases in inputs from acidic deposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...