ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 262 (1999), S. 180-188 
    ISSN: 1617-4623
    Keywords: Key words Mating type ; Dimorphic yeast ; Sporulation ; HMG box
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The MAT A locus of Yarrowia lipolytica, which was on the basis of its ability to induce sporulation in a diploid B/B strain, represses the mating capacity of this strain. The gene functions required for induction of sporulation and repression of conjugation could be separated by subcloning. Sequence analysis revealed two ORFs in the MAT A locus. One of them (MAT A1) codes for a protein of 119 amino acids which is required to induce sporulation. The other (MAT A2) codes for a protein of 291 amino acids that is able to repress conjugation. Both genes are oriented divergently from a central promoter region, which possesses putative TATA and CAAT boxes for both genes. The product of MAT A1 shows no homology to any known protein and seems to represent a new class of mating-type genes. MAT A2 contains a HMG box with homology to other mating-type genes. Both MAT A1 and MAT A2 are mating-type specific. In cells of both mating types, the regions flanking the MAT A locus contain sequences with homology to either S. cerevisiae SLA2 and ORF YBB9, respectively. From hybridization and subcloning data we estimate that the MAT A region is approximately 2 kb long and is present only once in the genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-24
    Description: Brachiopods are a lineage of invertebrates well known for the breadth and depth of their fossil record. Although the quality of this fossil record attracts the attention of paleontologists, geochemists, and paleoclimatologists, modern day brachiopods are also of interest to evolutionary biologists due to their potential to address a variety of questions ranging from developmental biology to biomineralization. The brachiopod shell is a composite material primarily composed of either calcite or calcium phosphate in close association with proteins and polysaccharides which give these composite structures their material properties. The information content of these biomolecules, sequestered within the shell during its construction, has the potential to inform hypotheses focused on describing how brachiopod shell formation evolved. Here, using high throughput proteomic approaches and next generation sequencing, we have surveyed and characterized the first shell-proteome and shell-forming transcriptome of any brachiopod, the South American Magellania venosa (Rhynchonelliformea: Terebratulida) . We find that the seven most abundant proteins present in the shell are unique to M. venosa , but that these proteins display biochemical features found in other metazoan biomineralization proteins. We can also detect some M. venosa proteins that display significant sequence similarity to other metazoan biomineralization proteins, suggesting that some elements of the brachiopod shell-forming proteome are deeply evolutionarily conserved. We also employed a variety of preparation methods to isolate shell proteins and find that in comparison to the shells of other spiralian invertebrates (such as mollusks) the shell ultrastructure of M. venosa may explain the effects these preparation strategies have on our results.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-22
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-28
    Description: Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse ( Mus musculus domesticus ). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a–Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the paternally expressed Peg13 transcript within the Trappc9 gene region on chromosome 15 to be highly differentiated. Interestingly, both regions have been implicated in Prader–Willi nervous system disorder phenotypes in humans. We suggest that these genomically imprinted regions are candidates for influencing the population-specific mate-choice in mice.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Knowledge about the genetic connectivity of populations is crucial for conserving biological diversity at hydrothermal vents. However, despite the paucity of such data for deep-sea biota, vent communities become increasingly threatened by anthropogenic pressures through resource extraction. Deep-sea mussels of the genus Bathymodiolus are key species in hydrothermal ecosystems worldwide. Using transcriptome sequencing we investigate migration and gene flow patterns among 10 Bathymodiolus populations of the Mid-Atlantic Ridge (37°N to 9°S). We combine outputs of particle tracking analyses using a 1/20° ocean model with genotypic data derived from 103 molecular markers that were designed from high-throughput transcriptomes. Multilocus assignment and differentiation tests indicated the presence of one southern and two northern genetic pools that become increasingly isolated with geographic distance. In spite of the relatively long pelagic duration of Bathymodiolus veligers, our analyses also show that dispersal of more than 100 km is unlikely and that connectivity between known vent populations can only be achieved via intermediate stepping stone habitats. These results have important ramifications for biodiversity conservation in Mid-Atlantic vents that might become targets for mineral extraction activities.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...