ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2019-06-28
    Description: A method of constructing fins of nearly optimum proportions has been developed by the NACA to the point where a cylinder has been manufactured and tested. Data were obtained on cylinder temperature for a wide range of inlet-manifold pressures, engine speeds, and cooling-pressure differences.
    Type: NACA-TR-779
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: This investigation was conducted to determine the comparative effects of valve timing on the performance of an unsupercharged engine at sea level and a supercharged engine at altitude. The tests were conducted on the NACA universal test engine. The timing of the four valve events was varied over a wide range; the engine speeds were varied between 1,050 and 1,500 r.p.m.; the compression ratios were varied between 4.35:1 and 7.35:1. The conditions of exhaust pressure and carburetor pressure of a supercharged engine were simulated for altitudes between 0 and 18,000 feet. The results show that optimum valve timing for a supercharged engine at an altitude of 18,000 feet differs slightly from that for an unsupercharged engine at sea level. A small increase in power is obtained by using the optimum timing for 18,000 feet for altitudes above 5,000 feet. The timing of the intake opening and exhaust closing becomes more critical as the compression ratio is increased.
    Type: NACA-TR-390
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.
    Type: NACA-TN-688
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An investigation was conducted to obtain fuel-consumption curves for a single-cylinder engine with a Wright 1820-G and Pratt & Whitney 1340-H cylinder at varying speeds, manifold pressures, and air-fuel ratios. The 1340- H cylinder was tested at speeds from 1,200 to 2,400 r.p.m. and at manifold pressures from 21 to 38 inches of mercury absolute. Less than extensive tests were made of the 1820-G cylinder. The results of the tests showed that the minimum brake fuel consumption was obtained when the engines were operating at high torques and at speeds from 60 to 70 percent of the rated speed. The fuel consumption increased at an increasing rate as the torque was reduced; and, at 45 percent of maximum torque, the fuel consumption was 20 percent higher than at maximum torque when the engines were operating at 70 percent of rated speed. Minimum specific fuel consumption was obtained at the same air-fuel ratio regardless of compression ratio. No improvement in fuel consumption was obtained when mixtures leaner than an air-fuel ratio of 15.5 were used. The leanest mixture ratio on which the engine with the 1340-H cylinder would operate smoothly was 18.5 and the spark advance for maximum power with this mixture ratio was 50 degrees B.T.C. A method is discussed for reducing the amount of testing necessary to obtain curves for minimum brake fuel consumption.
    Type: NACA-TN-654
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The results of tests made to determine the performance of a DePalma-Roots supercharger are presented. The performance of the DePalma supercharger with atmospheric pressure at the discharge was compared with that of a hypothetical NACA Roots-type supercharger of the same displacement. The tests were conducted at speeds from 1,000 to 6,000 r.p.m. and at pressure differences from 0 to 15 inches of mercury. The variation in clearance between the impeller tips and the impeller housing was determined for the DePalma supercharger at a speed of 2,000 r.p.m. and for the NACA supercharger at speeds from 500 to 3,000 r.p.m. with the pressure differences for each supercharger varying form 0 to 15 inches of mercury. The results indicate that, if warping and growing of the metals of the case and impellers are neglected, the most uniform clearances can probably be maintained for all operating conditions when the case and impellers are constructed of metals that have the same coefficient of expansion. The results also show that the discharge and intake openings of this model of the DePalma supercharger are too small, which lowers the volumetric efficiency and impairs the performance at all speeds and pressure differences. At high pressure difference the volumetric efficiency of the DePalma supercharger is greater when the discharge pressure surpasses atmospheric pressure than when the discharge pressure is atmospheric.
    Type: NACA-TN-558
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.
    Type: NACA-TN-584
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.
    Type: NACA-TN-466
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.
    Type: NACA-TN-572
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: This report presents the results of tests of a Power plus supercharger and a comparison of its performance with the performance previously obtained with an N.A.C.A. Roots-type supercharger. The Powerplus supercharger is a positive displacement blower of the vane type having mechanically operated vanes, the movement of which is controlled by slots and eccentrics. The supercharger was tested at a range of pressure differences from 0 to 15 inches of mercury and at speeds from 500 to 2,500 r.p.m. The pressure difference across the supercharger was obtained by throttling the intake of a depression tank which was interposed in the air duct between the supercharger and the Durley orifice box used for measuring the air. The results of these tests show that at low pressure differences and at all speeds the power required by the Powerplus supercharger to compress a definite quantity of air per second is considerably higher than that required by the Roots. At pressure differences from 10 to 14 inches of mercury and at speeds over 2,000 r.p.m. the power requirements of the two superchargers are practically the same. At a pressure difference of 15 inches of mercury or greater and at a speed of 2,500 r.p.m. or greater the performance of the Powerplus supercharger is slightly better than that of the Roots. Because the Powerplus supercharger cannot be operated at a speed greater than 3,000 r.p.m. as compared with 7,000 r.p.m. for the Roots, its capacity is approximately one-half that of the Roots for the same bulk. The Powerplus supercharger is more complicated and less reliable than the Roots supercharger.
    Type: NACA-TN-426
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: This report gives the results of an experimental determination of the temperature distribution in and the heat dissipation from a cylindrical finned surface for various fin-plane/air-stream angles. A steel cylinder 4.5 inches in diameter having slightly tapered fins of 0.30-inch pitch and 0.6 -inch width was equipped with an electrical heating unit furnishing 13 to 248 B.T.U. per hour per square inch of inside wall area. Air at speeds form 30 to 150 miles per hour was directed at seven different angles from 0 degrees to 90 degrees with respect to the fin planes. The tests show the best angle for cooling at all air speeds to be about 45 degrees. With the same temperature for the two conditions and with an air speed of 76 miles per hour, the heat input to the cylinder can be increased 50 percent at 45 degrees fin-plane/air-stream angle over that at 0 degrees.
    Type: NACA-TN-429
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...