ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-27
    Description: We compare two different methods of constraining the characteristic velocity and spatial scales of gas motions in the X-ray bright, nearby Centaurus cluster, using new deep (760 ks) Chandra observations. The power spectrum of excess surface brightness fluctuations in the 0.5–6.0 keV band in a sector to west is measured and compared to theoretical expectations for Kolmogorov index fluctuations. The observed power spectrum is flatter than these expectations, and the surface brightness fluctuations are around the 8 per cent level on length-scales of 2 kpc. We convert the 2D power spectrum of fluctuations into a 3D power spectrum using the method of Churazov et al., and then convert this into constraints on the one-component velocity of the gas motions as a function of their length-scale. We find one-component velocities in the range 100–150 km s –1 on spatial scales of 4–10 kpc. An independent constraint on the characteristic velocity and length-scales of the gas motions is then found by considering the diffusion coefficient needed to explain the distribution of metals in the Centaurus cluster, combined with the need to balance the rate of gas cooling with the rate of heat dissipated by the gas motions. We find that these two methods of constraining the velocity and length-scales of the gas motions are in good agreement.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-27
    Description: We present a dynamical analysis of the merging galaxy cluster system Abell 2146 using spectroscopy obtained with the Gemini Multi-Object Spectrograph on the Gemini North telescope. As revealed by the Chandra X-ray Observatory, the system is undergoing a major merger and has a gas structure indicative of a recent first core passage. The system presents two large shock fronts, making it unique amongst these rare systems. The hot gas structure indicates that the merger axis must be close to the plane of the sky and that the two merging clusters are relatively close in mass, from the observation of two shock fronts. Using 63 spectroscopically determined cluster members, we apply various statistical tests to establish the presence of two distinct massive structures. With the caveat that the system has recently undergone a major merger, the virial mass estimate is $M_{\rm vir}= 8.5^{+4.3}_{-4.7} \times 10^{14} \,\mathrm{M}_{{\odot }}$ for the whole system, consistent with the mass determination in a previous study using the Sunyaev–Zel'dovich signal. The newly calculated redshift for the system is z = 0.2323. A two-body dynamical model gives an angle of 13°–19° between the merger axis and the plane of the sky, and a time-scale after first core passage of 0.24–0.28 Gyr.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-26
    Description: We report the results of a multiwavelength study of the nearby galaxy group, Abell 3581 ( z  = 0.0218). This system hosts the most luminous cool core of any nearby group and exhibits active radio mode feedback from the supermassive black hole in its brightest group galaxy, IC 4374. The brightest galaxy has suffered multiple active galactic nucleus outbursts, blowing bubbles into the surrounding hot gas, which have resulted in the uplift of cool ionized gas into the surrounding hot intragroup medium. High velocities, indicative of an outflow, are observed close to the nucleus and coincident with the radio jet. Thin dusty filaments accompany the uplifted, ionized gas. No extended star formation is observed; however, a young cluster is detected just north of the nucleus. The direction of rise of the bubbles has changed between outbursts. This directional change is likely due to sloshing motions of the intragroup medium. These sloshing motions also appear to be actively stripping the X-ray cool core, as indicated by a spiralling cold front of high-metallicity, low-temperature, low entropy gas.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-02
    Description: We present ALMA observations of the CO(1–0) and CO(3–2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS 0745–191. The total molecular gas mass of $4.6\pm 0.3\times 10^{9} {\rm \, M_{{\odot}}}$ , assuming a Galactic X CO factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament ~ 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within $\pm 100 {\rm \, km \rm \, s^{-1}}$ of the galaxy's systemic velocity. Their full width at half-maximum (FWHM) are less than $150 {\rm \, km \rm \, s^{-1},}$ which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on 〈 10 7 yr time-scales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ .
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-01
    Description: The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin–Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM–Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual ‘V’ shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ~0.1 c , and lies much further from the central pulsar than the previous motions seen by Chandra .
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-02
    Description: Narrow-band HST imaging has resolved the detailed internal structure of the 10 kpc diameter H α+[N  ii ] emission line nebulosity in NGC4696, the central galaxy in the nearby Centaurus cluster, showing that the dusty, molecular, filaments have a width of about 60 pc. Optical morphology and velocity measurements indicate that the filaments are dragged out by the bubbling action of the radio source as part of the active galactic nucleus feedback cycle. Using the drag force we find that the magnetic field in the filaments is in approximate pressure equipartition with the hot gas. The filamentary nature of the cold gas continues inwards, swirling around and within the Bondi accretion radius of the central black hole, revealing the magnetic nature of the gas flows in massive elliptical galaxies. HST imaging resolves the magnetic, dusty, molecular filaments at the centre of the Centaurus cluster to a swirl around and within the Bondi radius.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-09
    Description: The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with active galactic nucleus feedback, the Perseus cluster and M 87, and a merging system, A 3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-17
    Description: We present the results of a deep Chandra observation of the Ophiuchus cluster, the second brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT ~ 1 keV in the core to kT ~ 9 keV at r ~ 30 kpc. Beyond r ~ 30 kpc, the intracluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing-induced cold fronts, with indications for both Rayleigh–Taylor and Kelvin–Helmholtz instabilities. The residual image reveals a likely subcluster south of the core at the projected distance of r ~ 280 kpc. The cluster also harbours a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuations outside of the cooling core is low, indicating velocities smaller than ~100 km s –1 . The density fluctuations might be damped by thermal conduction in the hot and remarkably isothermal ICM, resulting in our underestimate of gas velocities. We find a surprising, sharp surface brightness discontinuity, that is curved away from the core, at r ~ 120 kpc to the south-east of the cluster centre. We conclude that this feature is most likely due to gas dynamics associated with a merger. The cooling core lacks any observable X-ray cavities and the active galactic nucleus (AGN) only displays weak, point-like radio emission, lacking lobes or jets. The lack of strong AGN activity may be due to the bulk of the cooling taking place offset from the central supermassive black hole.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-22
    Description: X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s –1 on ~20–30 kpc scales and 70–100 km s –1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H , Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-01
    Description: We present a multiwavelength morphological analysis of star-forming clouds and filaments in the central (50 kpc) regions of 16 low-redshift ( z 〈 0.3) cool core brightest cluster galaxies. New Hubble Space Telescope imaging of far-ultraviolet continuum emission from young (10 Myr), massive (5 M ) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Lyα, narrow-band Hα, broad-band optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot (~10 7–8 K) and warm ionized (~10 4 K) gas phases, as well as the old stellar population and radio-bright active galactic nucleus (AGN) outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend towards and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed in situ by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star-forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to-free-fall time ratio is t cool / t ff ~ 10. This condition is roughly met at the maximal projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...