ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-29
    Description: A remarkable sedimentary record that extends from the Miocene to the late Pleistocene/Holocene has been drilled during IODP Expedition 341 (May - July 2013) in the Gulf of Alaska. The recovery and examination of sediments along a transect of five drill sites (U1417 - U1421) from the deep ocean towards the continental slope and offshore the St. Elias Mountains enables the reconstruction of the palaeoceanographic and environmental development in the NE Pacific during a period of significant global cooling and directly addresses the overall research objectives of the IODP programme. The knowledge about palaeo sea surface conditions and their relation to climate changes in the subpolar NE Pacific is relatively scarce and mainly confined to the past 17 ka BP (Barron et al., 2009; Davies et al., 2011; Addison et al., 2012). Biomarker based reconstructions of the sea surface conditions (i.e. sea surface temperature(SST), sea ice coverage, marine primary productivity) that characterised the subpolar NE Pacific during critical time intervals of Plio- and Pleistocene climate change may provide new information on oceanic and atmospheric feedback mechanisms and further enable the identification of teleconnections between the palaeoceanographic evolution in the North Pacific and the North Atlantic. Here we present preliminary biomarker data obtained from sediments from the distal deepwater site U1417 and the proximal site U1419 located at the Gulf of Alaska continental slope. Variability in the distribution and abundance of short- and long-chain n-alkanes, sterols, and C25-highly branched isoprenoids (HBIs) is interpreted to reflect changes in the environmental setting. These data provide insight in marine primary productivity changes(in response to cooling and warming intervals) and the variable input of terrigenous organic matter via meltwater and/or iceberg discharge events. The C25-HBI diene/triene ratio - hitherto used as a sea ice proxy in the Southern Ocean (Etourneau et al., 2013) - is applied to gain information about the variability in polar water/sea ice extent in the study area. Previously, Rowland et al. (2001) documented that not only the degree of unsaturation in C25-HBIs but also the E- to Z-isomerisation in the C25-HBI trienes increases with increasing water temperature. Based on this observation we suggest that the ratio of the Z-isomer to the E-isomer in the trienes might reflect SST changes and could be used as an additional SST proxy. The applicability of this approach, however, needs further evaluation (e.g. through comparisons with alkenone SST data obtained from Expedition 341 sediments).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geophysical Research Abstracts
    In:  EPIC3Geophysical Research Abstracts, EGU General Assembly Vienna, 2016-04Geophysical Research Abstracts
    Publication Date: 2022-09-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting, San Francisco, CA, USA, 2014-12-14-2014-12-19American Geophysical Union
    Publication Date: 2022-09-29
    Description: Since the Pliocene, global climate history is distinguished by the transition into a colder world, dominated by the onset and intensification of major Northern Hemisphere glaciations which have also changed in their duration and intensity. Potential drivers for these events include falling atmospheric CO2, progressive sub-glacial erosion, tectonic uplift, and associated feedbacks. At present, isolating climate as the driver of evolving continental ice volume since the Pliocene is hindered by the limited long term data sets which directly link climate changes to evidence for ice-sheet advance/retreat, erosion, and tectonic evolution over million year timescales. IODP Expedition 341 drilled a cross-margin transect in the Gulf of Alaska from ice-proximal sites on the continental shelf to distal sites in the deep Pacific. This study focuses on the distal site (Site U1417, c.4190 m water depth) which contains variable biogenic and terrigenous contributions, and evidence for deposition through pelagic, mass movement and glacial processes. Our aim is to investigate links between north-east Pacific paleoceanography and the history of the north-west Cordilleran ice sheet, neither of which are fully understood given limited data pre-dating the Last Glacial Maximum. We reconstruct SSTs during the mid-Pliocene, Plio-Pleistocene Transition (PPT) and mid-Pleistocene transition (MPT) using the UK37’ index. We consider the interaction between SSTs and primary production by examining the absolute and relative abundances of plankton biomarkers (e.g. for haptophytes, diatoms and dinoflagellates), carbon/nitrogen ratios, stable isotopes (δ13C, δ15N) and diatom assemblages. Links between these climatic events and the north-west Cordilleran ice-sheet advance/retreat history are initially made using shipboard stratigraphy; emerging data sets on ice-rafting from members of the Expedition 341 Scientific Party will refine these relationships.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...