ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (〈 0.3 deg at 90 GHz.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformations to be resolved by the measurement system were on the order of +/- 0.030 inches (0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. A photogrammetry (PG) system was chosen to perform the measurements since it is a non-contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The PG measurements met the desired requirements, enabling the desired deformations to be measured and even resolved to an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.
    Keywords: Instrumentation and Photography
    Type: Jul 30, 2000 - Aug 02, 2000; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: An enhanced alignment cube has been invented for use in a confined setting (e.g., a cryogenic chamber) in which optical access may be limited to a single line of sight. Whereas traditional alignment-cube practice entails the use of two theodolites aimed along two lines of sight, the enhanced alignment cube yields complete alignment information through use of a single theodolite aimed along a single line of sight. Typically, an alignment cube is placed in contact with a datum surface or other reference feature on a scientific instrument during assembly or testing of the instrument. The alignment cube is then used in measuring a small angular deviation of the feature from a precise required orientation. Commonly, the deviation is expressed in terms of rotations (Rx,Ry,Rz) of the cube about the corresponding Cartesian axes (x,y,z). In traditional practice, in order to measure all three rotations, it is necessary to use two theodolites aimed at two orthogonal faces of the alignment cube, as shown in the upper part of the figure. To be able to perform such a measurement, one needs optical access to these two faces. In the case of an alignment cube inside a cryogenic chamber or other enclosed space, the optical-access requirement translates to a requirement for two windows located along the corresponding two orthogonal lines of sight into the chamber. In a typical application, it is difficult or impossible to provide two windows. The present enhanced version of the alignment cube makes it possible to measure all three rotations by use of a single line of sight, thereby obviating a second window.
    Keywords: Man/System Technology and Life Support
    Type: GSC-14954-1 , NASA Tech Briefs, December 2006; 25-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
    Keywords: Instrumentation and Photography
    Type: SPIE International Symposium; Aug 02, 2000; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
    Keywords: Optics
    Type: GSFC-E-DAA-TN35237 , SPIE Optics and Photonics; Aug 28, 2016 - Sep 01, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The angular alignments and stabilities of multiple components in a single coordinate system were determined using various alignment tooling techniques. These techniques use autocollimation measurements with a first order theodolite and transformation of coordinates to determine the relative alignment between various components with respect to a common set of COBE spacecraft coordinate axes. Optical-mechanical alignment techniques were also used to integrate the flight COBE observatory attitude control system module that consists of gyros, reaction wheels, and a momentum wheel. Particular attention is given to the techniques for alignments and stabilities of the earth scanners, sun sensors, far IR absolute spectrophotometer, Diffuse Infrared Background Experiment, and differential microwave radiometer antenna horn boresights.
    Keywords: GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
    Type: Cryogenic Optical Systems and Instruments IV; Jul 10, 1990 - Jul 12, 1990; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Old techniques refined and combined to make new polarizers. Equipment and procedures developed for fabrication and inspection of large, precisely-spaced, flat grids of wire. Technology includes refinements and combinations of established techniques for winding grids of electron tubes and ruling optical gratings and incorporates recent developments in electronic control and laser/electronic-based metrology. Wire wrapped on frame half translated under automatic control to achieve desired space between turns. Frame halves put together, and excess wire cut away, leaving finished grid mounted in frame. Useful as polarizers and beam splitters for electromagnetic radiation in overlapping ranges of long infrared and microwaves.
    Keywords: FABRICATION TECHNOLOGY
    Type: GSC-13117 , NASA Tech Briefs (ISSN 0145-319X); 13; 2; P. 89
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
    Keywords: Astronomy
    Type: Jul 30, 2000 - Aug 02, 2000; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (approximately 0.2 degree) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformation predictions to be measured were on the order of +/- 0.030 inches (+/- 0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. The most troublesome limitation was the inability to send personnel into the chamber to perform the measurements during the test due to vacuum and the temperature extremes. The photogrammetry (PG) system was chosen to perform the measurements since it is a non- contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The measurements met the desired requirements, for the metal structures enabling the desired distortions to be measured resolving deformations an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.
    Keywords: Instrumentation and Photography
    Type: Jul 30, 2000 - Aug 02, 2000; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...