ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.
    Keywords: SPACE TRANSPORTATION
    Type: NASA. Johnson Space Center Space Shuttle Tech. Conf., Pt. 1; p 386-402
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: NASCRAC - a computer code for fracture mechanics analysis of crack growth - is described in this paper. The need for such a code is increasing as requirements grow for high reliability and low weight in aerospace components. The code is comprehensive and versatile, as well as user friendly. The major purpose of the code is calculation of fatigue, corrosion fatigue, or stress corrosion crack growth, and a variety of crack growth relations can be selected by the user. Additionally, crack retardation models are included. A very wide variety of stress intensity factor solutions are contained in the code, and extensive use is made of influence functions. This allows complex stress gradients in three-dimensional crack problems to be treated easily and economically. In cases where previous stress intensity factor solutions are not adequate, new influence functions can be calculated by the code. Additional features include incorporation of J-integral solutions from the literature and a capability for estimating elastic-plastic stress redistribution from the results of a corresponding elastic analysis. An example problem is presented which shows typical outputs from the code.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: AIAA PAPER 87-0847
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...