ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-13
    Description: Author(s): S. W. Epp, R. Steinbrügge, S. Bernitt, J. K. Rudolph, C. Beilmann, H. Bekker, A. Müller, O. O. Versolato, H.-C. Wille, H. Yavaş, J. Ullrich, and J. R. Crespo López-Urrutia We study two fundamental transitions from the ground state S 0 1 to P 1 1 ( w line) and P 1 3 ( y line) in heliumlike Kr 34 + by resonant single-photon excitation using an electron-beam ion trap and monochromatic x rays at PETRA III. Our results for the transition energies E ( w ) = 13 114.47 ( 14 ) eV and E ( y ) = 13 026.… [Phys. Rev. A 92, 020502(R)] Published Wed Aug 12, 2015
    Keywords: Atomic and molecular structure and dynamics
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-07
    Description: Author(s): R. Boll, D. Anielski, C. Bostedt, J. D. Bozek, L. Christensen, R. Coffee, S. De, P. Decleva, S. W. Epp, B. Erk, L. Foucar, F. Krasniqi, J. Küpper, A. Rouzée, B. Rudek, A. Rudenko, S. Schorb, H. Stapelfeldt, M. Stener, S. Stern, S. Techert, S. Trippel, M. J. J. Vrakking, J. Ullrich, and D. Rolles We demonstrate an experimental method to record snapshot diffraction images of polyatomic gas-phase molecules, which can, in a next step, be used to probe time-dependent changes in the molecular geometry during photochemical reactions with femtosecond temporal and angstrom spatial resolution. Adiaba... [Phys. Rev. A 88, 061402] Published Fri Dec 06, 2013
    Keywords: Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-06
    Description: Author(s): J. K. Rudolph, S. Bernitt, S. W. Epp, R. Steinbrügge, C. Beilmann, G. V. Brown, S. Eberle, A. Graf, Z. Harman, N. Hell, M. Leutenegger, A. Müller, K. Schlage, H.-C. Wille, H. Yavaş, J. Ullrich, and J. R. Crespo López-Urrutia Photoabsorption by and fluorescence of the K α transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main K α transitions in highly charged iron ions from heliumlike to fluorinelike (Fe 24+ to Fe 1... [Phys. Rev. Lett. 111, 103002] Published Thu Sep 05, 2013
    Keywords: Atomic, Molecular, and Optical Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-05
    Description: X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seibert, M Marvin -- Ekeberg, Tomas -- Maia, Filipe R N C -- Svenda, Martin -- Andreasson, Jakob -- Jonsson, Olof -- Odic, Dusko -- Iwan, Bianca -- Rocker, Andrea -- Westphal, Daniel -- Hantke, Max -- DePonte, Daniel P -- Barty, Anton -- Schulz, Joachim -- Gumprecht, Lars -- Coppola, Nicola -- Aquila, Andrew -- Liang, Mengning -- White, Thomas A -- Martin, Andrew -- Caleman, Carl -- Stern, Stephan -- Abergel, Chantal -- Seltzer, Virginie -- Claverie, Jean-Michel -- Bostedt, Christoph -- Bozek, John D -- Boutet, Sebastien -- Miahnahri, A Alan -- Messerschmidt, Marc -- Krzywinski, Jacek -- Williams, Garth -- Hodgson, Keith O -- Bogan, Michael J -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Andersson, Inger -- Bajt, Sasa -- Barthelmess, Miriam -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Kirian, Richard -- Hunter, Mark -- Doak, R Bruce -- Marchesini, Stefano -- Hau-Riege, Stefan P -- Frank, Matthias -- Shoeman, Robert L -- Lomb, Lukas -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Schmidt, Carlo -- Foucar, Lutz -- Kimmel, Nils -- Holl, Peter -- Rudek, Benedikt -- Erk, Benjamin -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Weidenspointner, Georg -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Schlichting, Ilme -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Chapman, Henry N -- Hajdu, Janos -- R01 GM095583/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):78-81. doi: 10.1038/nature09748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-751 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293374" target="_blank"〉PubMed〈/a〉
    Keywords: Electrons ; Hot Temperature ; Lasers ; Mimiviridae/*chemistry ; Photons ; Time Factors ; X-Ray Diffraction/*instrumentation/*methods ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-14
    Description: Highly charged iron (Fe(16+), here referred to as Fe XVII) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 angstroms. The Fe XVII spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe XVII line is generally weaker than predicted. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6sigma from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernitt, S -- Brown, G V -- Rudolph, J K -- Steinbrugge, R -- Graf, A -- Leutenegger, M -- Epp, S W -- Eberle, S -- Kubicek, K -- Mackel, V -- Simon, M C -- Trabert, E -- Magee, E W -- Beilmann, C -- Hell, N -- Schippers, S -- Muller, A -- Kahn, S M -- Surzhykov, A -- Harman, Z -- Keitel, C H -- Clementson, J -- Porter, F S -- Schlotter, W -- Turner, J J -- Ullrich, J -- Beiersdorfer, P -- Lopez-Urrutia, J R Crespo -- England -- Nature. 2012 Dec 13;492(7428):225-8. doi: 10.1038/nature11627.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. sven.bernitt@mpi-hd.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235875" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-05
    Description: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals ( approximately 200 nm to 2 mum in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Henry N -- Fromme, Petra -- Barty, Anton -- White, Thomas A -- Kirian, Richard A -- Aquila, Andrew -- Hunter, Mark S -- Schulz, Joachim -- DePonte, Daniel P -- Weierstall, Uwe -- Doak, R Bruce -- Maia, Filipe R N C -- Martin, Andrew V -- Schlichting, Ilme -- Lomb, Lukas -- Coppola, Nicola -- Shoeman, Robert L -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Foucar, Lutz -- Kimmel, Nils -- Weidenspointner, Georg -- Holl, Peter -- Liang, Mengning -- Barthelmess, Miriam -- Caleman, Carl -- Boutet, Sebastien -- Bogan, Michael J -- Krzywinski, Jacek -- Bostedt, Christoph -- Bajt, Sasa -- Gumprecht, Lars -- Rudek, Benedikt -- Erk, Benjamin -- Schmidt, Carlo -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Messerschmidt, Marc -- Bozek, John D -- Hau-Riege, Stefan P -- Frank, Matthias -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Williams, Garth J -- Hajdu, Janos -- Timneanu, Nicusor -- Seibert, M Marvin -- Andreasson, Jakob -- Rocker, Andrea -- Jonsson, Olof -- Svenda, Martin -- Stern, Stephan -- Nass, Karol -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schmidt, Kevin E -- Wang, Xiaoyu -- Grotjohann, Ingo -- Holton, James M -- Barends, Thomas R M -- Neutze, Richard -- Marchesini, Stefano -- Fromme, Raimund -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Andersson, Inger -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Spence, John C H -- 1R01GM095583-01/GM/NIGMS NIH HHS/ -- 1U54GM094625-01/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):73-7. doi: 10.1038/nature09750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. henry.chapman@desy.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293373" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/instrumentation/*methods ; Lasers ; Models, Molecular ; Nanoparticles/*chemistry ; Nanotechnology/instrumentation/*methods ; Photosystem I Protein Complex/*chemistry ; Protein Conformation ; Time Factors ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-29
    Description: The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, N D -- Hampton, C Y -- Martin, A V -- Starodub, D -- Sierra, R G -- Barty, A -- Aquila, A -- Schulz, J -- Lomb, L -- Steinbrener, J -- Shoeman, R L -- Kassemeyer, S -- Bostedt, C -- Bozek, J -- Epp, S W -- Erk, B -- Hartmann, R -- Rolles, D -- Rudenko, A -- Rudek, B -- Foucar, L -- Kimmel, N -- Weidenspointner, G -- Hauser, G -- Holl, P -- Pedersoli, E -- Liang, M -- Hunter, M S -- Gumprecht, L -- Coppola, N -- Wunderer, C -- Graafsma, H -- Maia, F R N C -- Ekeberg, T -- Hantke, M -- Fleckenstein, H -- Hirsemann, H -- Nass, K -- White, T A -- Tobias, H J -- Farquar, G R -- Benner, W H -- Hau-Riege, S P -- Reich, C -- Hartmann, A -- Soltau, H -- Marchesini, S -- Bajt, S -- Barthelmess, M -- Bucksbaum, P -- Hodgson, K O -- Struder, L -- Ullrich, J -- Frank, M -- Schlichting, I -- Chapman, H N -- Bogan, M J -- England -- Nature. 2012 Jun 27;486(7404):513-7. doi: 10.1038/nature11222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22739316" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols/*analysis/*chemistry ; Amino Acids/chemistry ; Electrons ; *Fractals ; Lasers ; *Mass Spectrometry ; *Motion ; Nanoparticles ; Particle Size ; Proteins/chemistry ; Solvents/chemistry ; Soot/*analysis/*chemistry ; Vibration ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-19
    Description: Studies of charge transfer are often hampered by difficulties in determining the charge localization at a given time. Here, we used ultrashort x-ray free-electron laser pulses to image charge rearrangement dynamics within gas-phase iodomethane molecules during dissociation induced by a synchronized near-infrared (NIR) laser pulse. Inner-shell photoionization creates positive charge, which is initially localized on the iodine atom. We map the electron transfer between the methyl and iodine fragments as a function of their interatomic separation set by the NIR-x-ray delay. We observe signatures of electron transfer for distances up to 20 angstroms and show that a realistic estimate of its effective spatial range can be obtained from a classical over-the-barrier model. The presented technique is applicable for spatiotemporal imaging of charge transfer dynamics in a wide range of molecular systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erk, Benjamin -- Boll, Rebecca -- Trippel, Sebastian -- Anielski, Denis -- Foucar, Lutz -- Rudek, Benedikt -- Epp, Sascha W -- Coffee, Ryan -- Carron, Sebastian -- Schorb, Sebastian -- Ferguson, Ken R -- Swiggers, Michele -- Bozek, John D -- Simon, Marc -- Marchenko, Tatiana -- Kupper, Jochen -- Schlichting, Ilme -- Ullrich, Joachim -- Bostedt, Christoph -- Rolles, Daniel -- Rudenko, Artem -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):288-91. doi: 10.1126/science.1253607. Epub 2014 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany. Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. benjamin.erk@desy.de rudenko@phys.ksu.edu. ; Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany. Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. ; Center for Free-Electron Laser Science (CFEL), DESY, 22607 Hamburg, Germany. ; Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Medizinische Forschung, 69120 Heidelberg, Germany. ; Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany. ; Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA. ; Sorbonne Universites, UPMC Universite Paris 06, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005, Paris, France. CNRS, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005, Paris, France. ; Center for Free-Electron Laser Science (CFEL), DESY, 22607 Hamburg, Germany. Department of Physics, University of Hamburg, 22761 Hamburg, Germany. Center for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. ; Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany. Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. ; Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany. Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Medizinische Forschung, 69120 Heidelberg, Germany. ; J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA. Max Planck Advanced Study Group at CFEL, 22607 Hamburg, Germany. Max-Planck-Institut fur Kernphysik, 69117 Heidelberg, Germany. benjamin.erk@desy.de rudenko@phys.ksu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035485" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-26
    Description: Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gomez, Luis F -- Ferguson, Ken R -- Cryan, James P -- Bacellar, Camila -- Tanyag, Rico Mayro P -- Jones, Curtis -- Schorb, Sebastian -- Anielski, Denis -- Belkacem, Ali -- Bernando, Charles -- Boll, Rebecca -- Bozek, John -- Carron, Sebastian -- Chen, Gang -- Delmas, Tjark -- Englert, Lars -- Epp, Sascha W -- Erk, Benjamin -- Foucar, Lutz -- Hartmann, Robert -- Hexemer, Alexander -- Huth, Martin -- Kwok, Justin -- Leone, Stephen R -- Ma, Jonathan H S -- Maia, Filipe R N C -- Malmerberg, Erik -- Marchesini, Stefano -- Neumark, Daniel M -- Poon, Billy -- Prell, James -- Rolles, Daniel -- Rudek, Benedikt -- Rudenko, Artem -- Seifrid, Martin -- Siefermann, Katrin R -- Sturm, Felix P -- Swiggers, Michele -- Ullrich, Joachim -- Weise, Fabian -- Zwart, Petrus -- Bostedt, Christoph -- Gessner, Oliver -- Vilesov, Andrey F -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):906-9. doi: 10.1126/science.1252395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Southern California (USC), Los Angeles, CA 90089, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA. ; Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. ; Department of Physics and Astronomy, USC, Los Angeles, CA 90089, USA. ; Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany. ; Advanced Light Source, LBNL, Berkeley, CA 94720, USA. ; CFEL, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Max-Planck-Institut fur Extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany. ; Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. Max-Planck-Institut fur Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ; PNSensor GmbH, Otto-Hahn-Ring 6, 81739 Munchen, Germany. ; Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, CA 90089, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA. Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. Department of Physics, The Chinese University of Hong Kong, Hong Kong, China. ; National Energy Research Scientific Computing Center, LBNL, Berkeley, CA 94720, USA. ; Physical Biosciences Division, LBNL, Berkeley, CA 94720, USA. Department of Plant and Microbial Biology, University of Calfornia Berkeley, Berkeley, CA 94720, USA. ; Advanced Light Source, LBNL, Berkeley, CA 94720, USA. Department of Physics, University of California Davis, Davis, CA 95616, USA. ; Physical Biosciences Division, LBNL, Berkeley, CA 94720, USA. ; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA. ; Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany. Max-Planck-Institut fur Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ; Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. James R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. PULSE Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. bostedt@slac.stanford.edu ogessner@lbl.gov vilesov@usc.edu. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. bostedt@slac.stanford.edu ogessner@lbl.gov vilesov@usc.edu. ; Department of Chemistry, University of Southern California (USC), Los Angeles, CA 90089, USA. Department of Physics and Astronomy, USC, Los Angeles, CA 90089, USA. bostedt@slac.stanford.edu ogessner@lbl.gov vilesov@usc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146284" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-12
    Description: Author(s): S. W. Epp A Comment on the Letter by C. Chantler et al. , Phys. Rev. Lett. 109 1 (2012) The authors of the Letter offer a Reply. [Phys. Rev. Lett. 110, 159301] Published Thu Apr 11, 2013
    Keywords: Comments
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...