ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2018
    Description: 〈p〉The Prototype Repository (PR) tunnel is located at the Äspö Hard Rock Laboratory near Oskarshamn in the southeast of Sweden. In the PR tunnel, six full-sized deposition holes (8.37 m deep and 1.75 m in diameter) have been constructed. Each deposition hole is designed to mimic the Swedish reference system for the disposal of nuclear fuel, KBS-3V. The PR experiment is designed to provide a full-scale simulation of the emplacement of heat-generating waste. There are three phases to the experiment: (1) the open tunnel phase following construction, where both the tunnel and deposition holes are open to atmospheric conditions; (2) the emplacement of canisters (containing heaters), backfill and seal in the first section of the tunnel; and (3) the emplacement of canisters, backfill and seal in the second section of the tunnel. This work describes the numerical modelling, performed as part of the engineered barrier systems (EBS) Task Force, to understand the thermo-hydraulic (TH) evolution of the PR experiment and to provide a better understanding of the interaction between the fractured rock and bentonite surrounding the canister at the scale of a single deposition tunnel. A coupled integrated TH model for predicting the wetting and the temperature of bentonite emplaced in fractured rock was developed, accounting for the heterogeneity of the fractured rock. In this model, geometrical uncertainties of fracture locations are modelled by using several stochastic realizations of the fracture network. The modelling methodology utilized information available at early stages of site characterization and included site statistics for fracture occurrence and properties, as well as proposed installation properties of the bentonite. The adopted approach provides an evaluation of the predictive capability of models, it gives an insight of the uncertainties to data and demonstrates that a simplified equivalent homogeneous description of the fractured host rock is insufficient to represent the bentonite resaturation.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈p〉A geological disposal facility (GDF) is the widely accepted long-term solution for the management of higher-activity radioactive waste. It consists of an engineered facility constructed in a suitable host rock. The facility is designed to inhibit the release of radioactivity by using a system consisting of engineered and natural barriers. The engineered barriers include the wasteform, used to immobilize the waste, the waste disposal container and any buffer material used to protect the container. The natural barrier includes the rocks in which the facility is constructed. The careful design of this multi-barrier system enables the harmful effects of the radioactivity on humans and biota in the surface environment to be reduced to safe levels.〈/p〉 〈p〉Bentonite is an important buffer material used as a component of a multi-barrier disposal system. For example, compacted bentonite rings and blocks are used to protect the copper container, used for the disposal of spent fuel, in the KBS-3 disposal system. As the bentonite saturates, through contact with groundwater from the host rock, it swells and provides a low hydraulic conductivity barrier, enabling the container to be protected from deleterious processes, such as corrosion. The characteristic swelling behaviour of bentonite is due to the presence of significant quantities of sodium montmorillonite.〈/p〉 〈p〉Recently, there have been detailed 〈i〉in situ〈/i〉 experiments designed to understand how bentonite performs under natural conditions. One such experiment is the Buffer–Rock Interaction Experiment (BRIE), performed at the Äspö Hard Rock Laboratory near Oskarshamn in the SE of Sweden. This experiment is designed to further understand the wetting of bentonite from the groundwater flow in a fractured granite host rock.〈/p〉 〈p〉In this paper, the observations from the BRIE are explained using an integrated model that is able to describe the saturation of bentonite emplaced in a heterogeneous fractured rock. It provides a framework to understand the key processes in both the rock and bentonite. The predictive capability of these models was investigated within the context of uncertainties in the data and the consequence for predictions of the wetting of emplaced bentonite. For example, to predict the wetting of emplaced bentonite requires an understanding of the distribution of fracture transmissivity intersecting the bentonite. A consequence of these findings is that the characterization of the fractured rock local to the bentonite is critical to understanding the subsequent wetting profiles. In particular, prediction of the time taken to achieve full saturation of bentonite using a simplified equivalent homogeneous description of the fractured host rock will tend to be too short.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-09
    Description: The Prototype Repository (PR) tunnel is located at the Äspö Hard Rock Laboratory near Oskarshamn in the southeast of Sweden. In the PR tunnel, six full-sized deposition holes (8.37 m deep and 1.75 m in diameter) have been constructed. Each deposition hole is designed to mimic the Swedish reference system for the disposal of nuclear fuel, KBS-3V. The PR experiment is designed to provide a full-scale simulation of the emplacement of heat-generating waste. There are three phases to the experiment: (1) the open tunnel phase following construction, where both the tunnel and deposition holes are open to atmospheric conditions; (2) the emplacement of canisters (containing heaters), backfill and seal in the first section of the tunnel; and (3) the emplacement of canisters, backfill and seal in the second section of the tunnel. This work describes the numerical modelling, performed as part of the engineered barrier systems (EBS) Task Force, to understand the thermo-hydraulic (TH) evolution of the PR experiment and to provide a better understanding of the interaction between the fractured rock and bentonite surrounding the canister at the scale of a single deposition tunnel. A coupled integrated TH model for predicting the wetting and the temperature of bentonite emplaced in fractured rock was developed, accounting for the heterogeneity of the fractured rock. In this model, geometrical uncertainties of fracture locations are modelled by using several stochastic realizations of the fracture network. The modelling methodology utilized information available at early stages of site characterization and included site statistics for fracture occurrence and properties, as well as proposed installation properties of the bentonite. The adopted approach provides an evaluation of the predictive capability of models, it gives an insight of the uncertainties to data and demonstrates that a simplified equivalent homogeneous description of the fractured host rock is insufficient to represent the bentonite resaturation.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-30
    Description: A geological disposal facility (GDF) is the widely accepted long-term solution for the management of higher-activity radioactive waste. It consists of an engineered facility constructed in a suitable host rock. The facility is designed to inhibit the release of radioactivity by using a system consisting of engineered and natural barriers. The engineered barriers include the wasteform, used to immobilize the waste, the waste disposal container and any buffer material used to protect the container. The natural barrier includes the rocks in which the facility is constructed. The careful design of this multi-barrier system enables the harmful effects of the radioactivity on humans and biota in the surface environment to be reduced to safe levels. Bentonite is an important buffer material used as a component of a multi-barrier disposal system. For example, compacted bentonite rings and blocks are used to protect the copper container, used for the disposal of spent fuel, in the KBS-3 disposal system. As the bentonite saturates, through contact with groundwater from the host rock, it swells and provides a low hydraulic conductivity barrier, enabling the container to be protected from deleterious processes, such as corrosion. The characteristic swelling behaviour of bentonite is due to the presence of significant quantities of sodium montmorillonite. Recently, there have been detailed in situ experiments designed to understand how bentonite performs under natural conditions. One such experiment is the Buffer–Rock Interaction Experiment (BRIE), performed at the Äspö Hard Rock Laboratory near Oskarshamn in the SE of Sweden. This experiment is designed to further understand the wetting of bentonite from the groundwater flow in a fractured granite host rock. In this paper, the observations from the BRIE are explained using an integrated model that is able to describe the saturation of bentonite emplaced in a heterogeneous fractured rock. It provides a framework to understand the key processes in both the rock and bentonite. The predictive capability of these models was investigated within the context of uncertainties in the data and the consequence for predictions of the wetting of emplaced bentonite. For example, to predict the wetting of emplaced bentonite requires an understanding of the distribution of fracture transmissivity intersecting the bentonite. A consequence of these findings is that the characterization of the fractured rock local to the bentonite is critical to understanding the subsequent wetting profiles. In particular, prediction of the time taken to achieve full saturation of bentonite using a simplified equivalent homogeneous description of the fractured host rock will tend to be too short.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-01-01
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Seismic data obtained using borehole seismometers during the LFASE experiment (Stephen et al, 1989; Koelsch et al, 1990) are retrieved from the seafloor instrument package and converted to a data format more suitable for analysis with existing computer systems. This report describes the computer program CGG2ROSE2 for converting LFASE optical disk files recorded in CGG format by the data acquisition computer into standard ROSE format data files on a VAX/VMS computer. CGG2ROSE2 provides features for rearranging LFASE data into smaller segments, making corrections to timing information, and replacing file header information.
    Keywords: Seismic arrays ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: This technical report provides an overview of the LFASE data processing system. This software system is made up of over twenty-five programs which are used to acquire, reduce, and analyze acoustic seismic data collected during the Low Frequency Acoustic Seismic Experiment (LFASE) (Stephen et al, 1989; Koelsch et al, 1990). This report is directed at scientific and engineering personnel who wish to understand the overall LFASE data processing system as well as the individual processing procedures which are utilized during each stage of data reduction and interpretation. The report is also directed at programmers, data processors, technicians, and other individuals who plan to work with LFASE programs and data.
    Keywords: Seismic arrays ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: PLOT_FINDIF is a MATLAB script which is used to plot output from the Woods Hole Oceanographic Institution (WHOI) Time Domain Finite Difference (TDFD) program called "Geoacoustic_TDFD" Both Geoacoustic_TDFD and PLOT_FINDIF are available from the ONR Ocean Acoustics Library (http://www.hlsresearch.com/oalib/). This script will plot both the snapshot and time series output from Geoacoustic_TDFD. To run this script you must have a MATLAB license and the complete suite of 32 m-files contained in the PLOT_FINDIF package. This code has been tested with MATLAB versions 6 and 7.
    Description: Funding was provided by the Office of Naval Research under Contract No. N00014-04-1-0090.
    Keywords: Time domain finite differences ; Bottom interaction ; Ocean acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 15291344 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2009. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 126 (2009): 599-606, doi:10.1121/1.3158826.
    Description: Receptions, from a ship-suspended source (in the band 50–100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), “deep seafloor arrivals,” that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.
    Description: The LOAPEX source deployments, the moored DVLA receiver deployments, and some post-cruise data reduction and analysis were funded by the Office of Naval Research under Award Nos. N00014-1403-1-0181, N00014-03-1-0182, and N00014-06-1-0222. Additional post-cruise analysis support was provided to RAS through the Edward W. and Betty J. Scripps Chair for Excellence in Oceanography. The OBS/Hs used in the experiment were provided by Scripps Institution of Oceanography under the U.S. National Ocean Bottom Seismic Instrumentation Pool (SIO-OBSIP—http://www.obsip.org). To cover the costs of the OBS/H deployments funds were paid to SIO-OBSIP from the National Science Foundation and from the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute.
    Keywords: Hydrophones ; Ocean waves ; Oceanographic equipment ; Sonar ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 3307-3317, doi:10.1121/1.4818845.
    Description: Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These “deep seafloor” arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.
    Description: The OBS/Hs used in the LOAPEX field program were provided by Scripps Institution of Oceanography under the U.S. National Ocean Bottom Seismic Instrumentation Pool (SIO-OBSIP, http:// www.obsip.org). The OBS/H deployments themselves were co-funded through direct funding to SIO-OBSIP by the National Science Foundation and by Woods Hole Oceanographic Institution under a grant from the WHOI Deep Ocean Exploration Institute. The LOAPEX source deployments and the moored DVLA receiver deployments were funded by the Office of Naval Research under Award Nos. N00014-03-1-0181 and N00014-03-1-0182. The data reduction and analysis in this paper were funded by the Office of Naval Research under Award Nos. N00014-06-1-0222 and N00014-10-1-0510. Additional post-cruise analysis support was provided to RAS through the Edward W. and Betty J. Scripps Chair for Excellence in Oceanography.
    Keywords: Acoustic arrays ; Acoustic noise ; Acoustic signal processing ; Acoustic wave reflection ; Acoustic wave velocity ; Long-range order ; Ocean waves ; Seafloor phenomena ; Seismometers ; Surface acoustic waves ; Surface energy ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...