ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-03
    Description: Credit scores are the most widely used instruments to assess whether or not a person is a financial risk. Credit scoring has been so successful that it has expanded beyond lending and into our everyday lives, even to inform how insurers evaluate our health. The pervasive application of credit scoring...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-24
    Description: Aquaporins (AQPs) feature highly selective water transport through cell membranes, where the dipolar orientation of structured water wires spanning the AQP pore is of considerable importance for the selective translocation of water over ions. We recently discovered that water permeability through artificial water channels formed by stacked imidazole I-quartet superstructures increases when the channel water molecules are highly organized. Correlating water structure with molecular transport is essential for understanding the underlying mechanisms of (fast) water translocation and channel selectivity. Chirality adds another factor enabling unique dipolar oriented water structures. We show that water molecules exhibit a dipolar oriented wire structure within chiral I-quartet water channels both in the solid state and embedded in supported lipid bilayer membranes (SLBs). X-ray single-crystal structures show that crystallographic water wires exhibit dipolar orientation, which is unique for chiral I-quartets. The integration of I-quartets into SLBs was monitored with a quartz crystal microbalance with dissipation, quantizing the amount of channel water molecules. Nonlinear sum-frequency generation vibrational spectroscopy demonstrates the first experimental observation of dipolar oriented water structures within artificial water channels inserted in bilayer membranes. Confirmation of the ordered confined water is obtained via molecular simulations, which provide quantitative measures of hydrogen bond strength, connectivity, and the stability of their dipolar alignment in a membrane environment. Together, uncovering the interplay between the dipolar aligned water structure and water transport through the self-assembled I-quartets is critical to understanding the behavior of natural membrane channels and will accelerate the systematic discovery for developing artificial water channels for water desalting.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-09
    Description: Cold, clumpy accretion onto an active supermassive black hole Nature 534, 7606 (2016). doi:10.1038/nature17969 Authors: Grant R. Tremblay, J. B. Raymond Oonk, Françoise Combes, Philippe Salomé, Christopher, P. O’Dea, Stefi A. Baum, G. Mark Voit, Megan Donahue, Brian R. McNamara, Timothy A. Davis, Michael A. McDonald, Alastair C. Edge, Tracy E. Clarke, Roberto Galván-Madrid, Malcolm N. Bremer, Louise O. V. Edwards, Andrew C. Fabian, Stephen Hamer, Yuan Li, Anaëlle Maury, Helen R. Russell, Alice C. Quillen, C. Megan Urry, Jeremy S. Sanders & Michael W. Wise Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-08-23
    Description: The giant elliptical galaxy NGC 1275, at the centre of the Perseus cluster, is surrounded by a well-known giant nebulosity of emission-line filaments, which are plausibly in excess of 10(8) years old. The filaments are dragged out from the centre of the galaxy by radio-emitting 'bubbles' rising buoyantly in the hot intracluster gas, before later falling back. They act as markers of the feedback process by which energy is transferred from the central massive black hole to the surrounding gas. The mechanism by which the filaments are stabilized against tidal shear and dissipation into the surrounding extremely hot (4 x 10(7) K) gas has been unclear. Here we report observations that resolve thread-like structures in the filaments. Some threads extend over 6 kpc, yet are only 70 pc wide. We conclude that magnetic fields in the threads, in pressure balance with the surrounding gas, stabilize the filaments, so allowing a large mass of cold gas to accumulate and delay star formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fabian, A C -- Johnstone, R M -- Sanders, J S -- Conselice, C J -- Crawford, C S -- Gallagher, J S 3rd -- Zweibel, E -- England -- Nature. 2008 Aug 21;454(7207):968-70. doi: 10.1038/nature07169.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK. acf@ast.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719583" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-10-10
    Description: Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656934/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656934/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pain, A -- Bohme, U -- Berry, A E -- Mungall, K -- Finn, R D -- Jackson, A P -- Mourier, T -- Mistry, J -- Pasini, E M -- Aslett, M A -- Balasubrammaniam, S -- Borgwardt, K -- Brooks, K -- Carret, C -- Carver, T J -- Cherevach, I -- Chillingworth, T -- Clark, T G -- Galinski, M R -- Hall, N -- Harper, D -- Harris, D -- Hauser, H -- Ivens, A -- Janssen, C S -- Keane, T -- Larke, N -- Lapp, S -- Marti, M -- Moule, S -- Meyer, I M -- Ormond, D -- Peters, N -- Sanders, M -- Sanders, S -- Sargeant, T J -- Simmonds, M -- Smith, F -- Squares, R -- Thurston, S -- Tivey, A R -- Walker, D -- White, B -- Zuiderwijk, E -- Churcher, C -- Quail, M A -- Cowman, A F -- Turner, C M R -- Rajandream, M A -- Kocken, C H M -- Thomas, A W -- Newbold, C I -- Barrell, B G -- Berriman, M -- 085775/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Oct 9;455(7214):799-803. doi: 10.1038/nature07306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. ap2@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18843368" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/chemistry/genetics ; Chromosomes/genetics ; Conserved Sequence ; Genes, Protozoan/genetics ; Genome, Protozoan/*genetics ; *Genomics ; Humans ; Macaca mulatta/*parasitology ; Malaria/*parasitology ; Molecular Sequence Data ; Plasmodium knowlesi/classification/*genetics/physiology ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/genetics ; Sequence Analysis, DNA ; Telomere/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-26
    Description: Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simionescu, Aurora -- Allen, Steven W -- Mantz, Adam -- Werner, Norbert -- Takei, Yoh -- Morris, R Glenn -- Fabian, Andrew C -- Sanders, Jeremy S -- Nulsen, Paul E J -- George, Matthew R -- Taylor, Gregory B -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1576-9. doi: 10.1126/science.1200331.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA. asimi@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436446" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-21
    Description: The hot x-ray-emitting plasma in galaxy clusters is predicted to have turbulent motion, which can contribute around 10% of the cluster's central energy density. We report deep Chandra X-ray Observatory observations of the Coma cluster core, showing the presence of quasi-linear high-density arms spanning 150 kiloparsecs, consisting of low-entropy material that was probably stripped from merging subclusters. Two appear to be connected with a subgroup of galaxies at a 650-kiloparsec radius that is merging into the cluster, implying coherence over several hundred million years. Such a long lifetime implies that strong isotropic turbulence and conduction are suppressed in the core, despite the unrelaxed state of the cluster. Magnetic fields are presumably responsible. The structures seen in Coma present insight into the past billion years of subcluster merger activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanders, J S -- Fabian, A C -- Churazov, E -- Schekochihin, A A -- Simionescu, A -- Walker, S A -- Werner, N -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1365-8. doi: 10.1126/science.1238334.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany. jsanders@mpe.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24052301" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-08-24
    Description: The development of the human cerebral cortex is an orchestrated process involving the generation of neural progenitors in the periventricular germinal zones, cell proliferation characterized by symmetric and asymmetric mitoses, followed by migration of post-mitotic neurons to their final destinations in six highly ordered, functionally specialized layers. An understanding of the molecular mechanisms guiding these intricate processes is in its infancy, substantially driven by the discovery of rare mutations that cause malformations of cortical development. Mapping of disease loci in putative Mendelian forms of malformations of cortical development has been hindered by marked locus heterogeneity, small kindred sizes and diagnostic classifications that may not reflect molecular pathogenesis. Here we demonstrate the use of whole-exome sequencing to overcome these obstacles by identifying recessive mutations in WD repeat domain 62 (WDR62) as the cause of a wide spectrum of severe cerebral cortical malformations including microcephaly, pachygyria with cortical thickening as well as hypoplasia of the corpus callosum. Some patients with mutations in WDR62 had evidence of additional abnormalities including lissencephaly, schizencephaly, polymicrogyria and, in one instance, cerebellar hypoplasia, all traits traditionally regarded as distinct entities. In mice and humans, WDR62 transcripts and protein are enriched in neural progenitors within the ventricular and subventricular zones. Expression of WDR62 in the neocortex is transient, spanning the period of embryonic neurogenesis. Unlike other known microcephaly genes, WDR62 does not apparently associate with centrosomes and is predominantly nuclear in localization. These findings unify previously disparate aspects of cerebral cortical development and highlight the use of whole-exome sequencing to identify disease loci in settings in which traditional methods have proved challenging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilguvar, Kaya -- Ozturk, Ali Kemal -- Louvi, Angeliki -- Kwan, Kenneth Y -- Choi, Murim -- Tatli, Burak -- Yalnizoglu, Dilek -- Tuysuz, Beyhan -- Caglayan, Ahmet Okay -- Gokben, Sarenur -- Kaymakcalan, Hande -- Barak, Tanyeri -- Bakircioglu, Mehmet -- Yasuno, Katsuhito -- Ho, Winson -- Sanders, Stephan -- Zhu, Ying -- Yilmaz, Sanem -- Dincer, Alp -- Johnson, Michele H -- Bronen, Richard A -- Kocer, Naci -- Per, Huseyin -- Mane, Shrikant -- Pamir, Mehmet Necmettin -- Yalcinkaya, Cengiz -- Kumandas, Sefer -- Topcu, Meral -- Ozmen, Meral -- Sestan, Nenad -- Lifton, Richard P -- State, Matthew W -- Gunel, Murat -- RC2 NS070477/NS/NINDS NIH HHS/ -- RC2 NS070477-01/NS/NINDS NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- U24 NS051869-02S1/NS/NINDS NIH HHS/ -- UL1 RR024139NIH/RR/NCRR NIH HHS/ -- UO1MH081896/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 9;467(7312):207-10. doi: 10.1038/nature09327. Epub 2010 Aug 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20729831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain/*abnormalities/growth & development/pathology ; Brain Diseases/*genetics/pathology ; DNA Mutational Analysis/*methods ; Female ; Genes, Recessive ; Humans ; Male ; Mice ; Microcephaly/genetics/pathology ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*genetics/metabolism ; Pedigree
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-22
    Description: Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paterson, Andrew H -- Wendel, Jonathan F -- Gundlach, Heidrun -- Guo, Hui -- Jenkins, Jerry -- Jin, Dianchuan -- Llewellyn, Danny -- Showmaker, Kurtis C -- Shu, Shengqiang -- Udall, Joshua -- Yoo, Mi-jeong -- Byers, Robert -- Chen, Wei -- Doron-Faigenboim, Adi -- Duke, Mary V -- Gong, Lei -- Grimwood, Jane -- Grover, Corrinne -- Grupp, Kara -- Hu, Guanjing -- Lee, Tae-ho -- Li, Jingping -- Lin, Lifeng -- Liu, Tao -- Marler, Barry S -- Page, Justin T -- Roberts, Alison W -- Romanel, Elisson -- Sanders, William S -- Szadkowski, Emmanuel -- Tan, Xu -- Tang, Haibao -- Xu, Chunming -- Wang, Jinpeng -- Wang, Zining -- Zhang, Dong -- Zhang, Lan -- Ashrafi, Hamid -- Bedon, Frank -- Bowers, John E -- Brubaker, Curt L -- Chee, Peng W -- Das, Sayan -- Gingle, Alan R -- Haigler, Candace H -- Harker, David -- Hoffmann, Lucia V -- Hovav, Ran -- Jones, Donald C -- Lemke, Cornelia -- Mansoor, Shahid -- ur Rahman, Mehboob -- Rainville, Lisa N -- Rambani, Aditi -- Reddy, Umesh K -- Rong, Jun-kang -- Saranga, Yehoshua -- Scheffler, Brian E -- Scheffler, Jodi A -- Stelly, David M -- Triplett, Barbara A -- Van Deynze, Allen -- Vaslin, Maite F S -- Waghmare, Vijay N -- Walford, Sally A -- Wright, Robert J -- Zaki, Essam A -- Zhang, Tianzhen -- Dennis, Elizabeth S -- Mayer, Klaus F X -- Peterson, Daniel G -- Rokhsar, Daniel S -- Wang, Xiyin -- Schmutz, Jeremy -- England -- Nature. 2012 Dec 20;492(7429):423-7. doi: 10.1038/nature11798.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23257886" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; *Biological Evolution ; Cacao/genetics ; Chromosomes, Plant/genetics ; *Cotton Fiber ; Diploidy ; Gene Duplication/genetics ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Gossypium/classification/*genetics ; Molecular Sequence Annotation ; Phylogeny ; *Polyploidy ; Vitis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-05
    Description: The hot (10(7) to 10(8) kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius-it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhuravleva, I -- Churazov, E -- Schekochihin, A A -- Allen, S W -- Arevalo, P -- Fabian, A C -- Forman, W R -- Sanders, J S -- Simionescu, A -- Sunyaev, R -- Vikhlinin, A -- Werner, N -- England -- Nature. 2014 Nov 6;515(7525):85-7. doi: 10.1038/nature13830. Epub 2014 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94305-4085, USA [2] Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305-4060, USA. ; 1] Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany [2] Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia. ; 1] Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd, Oxford OX1 3NP, UK [2] Merton College, University of Oxford, Merton St, Oxford OX1 4JD, UK. ; 1] Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94305-4085, USA [2] Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305-4060, USA [3] SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretana N 1111, Playa Ancha, Valparaiso, Chile [2] Instituto de Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, 306, Santiago 22, Chile. ; Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK. ; Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA. ; Max-Planck-Institut fur extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany. ; Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363764" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...