ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-03
    Description: Recent evidence indicates that p53 suppression increased the efficiency of induced pluripotent stem cell (iPSC) generation. This occurred even with the enforced expression of as few as two canonical transcription factors, Oct4 and Sox2. In this study, primary human keratinocytes were successfully induced into a stage of plasticity by transient inactivation of p53, without enforced expression of any of the transcription factors previously used in iPSC generation. These cells were later redifferentiated into neural lineages. The gene suppression plastic cells were morphologically indistinguishable from human ES cells. Gene suppression plastic cells were alkaline phosphatase-positive, had normal karyotypes, and expressed p53. Together with the accumulating evidence of similarities and overlapping mechanisms between iPSC generation and cancer formation, this finding sheds light on the emerging picture of p53 sitting at the crossroads between two intricate cellular potentials: stem cell vs. cancer cell generation. This finding further supports the crucial role played by p53 in cellular reprogramming and suggests an alternative method to switch the lineage identity of human cells. This reported method offers the potential for directed lineage switching with the goal of generating autologous cell populations for novel clinical applications for neurodegenerative diseases.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-18
    Description: Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-beta precursor protein (APP) and extracellular Abeta42 and Abeta40 (the 42- and 40-residue isoforms of the amyloid-beta peptide), and knockdown of PLD3 leads to a significant increase in extracellular Abeta42 and Abeta40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050701/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050701/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruchaga, Carlos -- Karch, Celeste M -- Jin, Sheng Chih -- Benitez, Bruno A -- Cai, Yefei -- Guerreiro, Rita -- Harari, Oscar -- Norton, Joanne -- Budde, John -- Bertelsen, Sarah -- Jeng, Amanda T -- Cooper, Breanna -- Skorupa, Tara -- Carrell, David -- Levitch, Denise -- Hsu, Simon -- Choi, Jiyoon -- Ryten, Mina -- UK Brain Expression Consortium -- Hardy, John -- Trabzuni, Daniah -- Weale, Michael E -- Ramasamy, Adaikalavan -- Smith, Colin -- Sassi, Celeste -- Bras, Jose -- Gibbs, J Raphael -- Hernandez, Dena G -- Lupton, Michelle K -- Powell, John -- Forabosco, Paola -- Ridge, Perry G -- Corcoran, Christopher D -- Tschanz, Joann T -- Norton, Maria C -- Munger, Ronald G -- Schmutz, Cameron -- Leary, Maegan -- Demirci, F Yesim -- Bamne, Mikhil N -- Wang, Xingbin -- Lopez, Oscar L -- Ganguli, Mary -- Medway, Christopher -- Turton, James -- Lord, Jenny -- Braae, Anne -- Barber, Imelda -- Brown, Kristelle -- Alzheimer's Research UK Consortium -- Passmore, Peter -- Craig, David -- Johnston, Janet -- McGuinness, Bernadette -- Todd, Stephen -- Heun, Reinhard -- Kolsch, Heike -- Kehoe, Patrick G -- Hooper, Nigel M -- Vardy, Emma R L C -- Mann, David M -- Pickering-Brown, Stuart -- Kalsheker, Noor -- Lowe, James -- Morgan, Kevin -- David Smith, A -- Wilcock, Gordon -- Warden, Donald -- Holmes, Clive -- Pastor, Pau -- Lorenzo-Betancor, Oswaldo -- Brkanac, Zoran -- Scott, Erick -- Topol, Eric -- Rogaeva, Ekaterina -- Singleton, Andrew B -- Kamboh, M Ilyas -- St George-Hyslop, Peter -- Cairns, Nigel -- Morris, John C -- Kauwe, John S K -- Goate, Alison M -- 081864/Wellcome Trust/United Kingdom -- 089698/Wellcome Trust/United Kingdom -- 089703/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- 1R01AG041797/AG/NIA NIH HHS/ -- 5U24AG026395/AG/NIA NIH HHS/ -- AG005133/AG/NIA NIH HHS/ -- AG023652/AG/NIA NIH HHS/ -- AG030653/AG/NIA NIH HHS/ -- AG041718/AG/NIA NIH HHS/ -- AG07562/AG/NIA NIH HHS/ -- G0802189/Medical Research Council/United Kingdom -- G0802462/Medical Research Council/United Kingdom -- G0901254/Medical Research Council/United Kingdom -- G1100695/Medical Research Council/United Kingdom -- K01 AG046374/AG/NIA NIH HHS/ -- MC_G1000734/Medical Research Council/United Kingdom -- NIH P50 AG05681/AG/NIA NIH HHS/ -- NIH R01039700/PHS HHS/ -- P01 AG003991/AG/NIA NIH HHS/ -- P01 AG026276/AG/NIA NIH HHS/ -- P01 AG03991/AG/NIA NIH HHS/ -- P30 NS069329/NS/NINDS NIH HHS/ -- P30-NS069329/NS/NINDS NIH HHS/ -- P50 AG005133/AG/NIA NIH HHS/ -- P50 AG005681/AG/NIA NIH HHS/ -- R01 AG011380/AG/NIA NIH HHS/ -- R01 AG030653/AG/NIA NIH HHS/ -- R01 AG035083/AG/NIA NIH HHS/ -- R01 AG039700/AG/NIA NIH HHS/ -- R01 AG041718/AG/NIA NIH HHS/ -- R01 AG041797/AG/NIA NIH HHS/ -- R01 AG042611/AG/NIA NIH HHS/ -- R01 AG044546/AG/NIA NIH HHS/ -- R01-AG035083/AG/NIA NIH HHS/ -- R01-AG042611/AG/NIA NIH HHS/ -- R01-AG044546/AG/NIA NIH HHS/ -- R01-AG11380/AG/NIA NIH HHS/ -- R01-AG18712/AG/NIA NIH HHS/ -- R01-AG21136/AG/NIA NIH HHS/ -- R01AG21136/AG/NIA NIH HHS/ -- R25 DA027995/DA/NIDA NIH HHS/ -- U24 AG021886/AG/NIA NIH HHS/ -- U24 AG026395/AG/NIA NIH HHS/ -- U24AG21886/AG/NIA NIH HHS/ -- WT089698/Wellcome Trust/United Kingdom -- ZIA AG000950-11/Intramural NIH HHS/ -- ZO1 AG000950-10/AG/NIA NIH HHS/ -- ZO1AG000950-11/AG/NIA NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Jan 23;505(7484):550-4. doi: 10.1038/nature12825. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3]. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2]. ; Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK [2] Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35 Room 1A1014, 35 Lincoln Drive, Bethesda, Maryland 20892, USA. ; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. ; Department of Medical and Molecular Genetics, King's College London, 16 De Crespigny Park, London SE5 8AF UK. ; MRC Sudden Death Brain Bank Project, University of Edinburgh, South Bridge, Edinburgh EH8 9YL UK. ; 1] Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK [2] Neuroimaging Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia. ; Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK. ; Istituto di Genetica delle Popolazioni - CNR, Trav. La Crucca, 3 - Reg. Baldinca - 07100 Li Punti, Sassari, Italy. ; Department of Biology, Brigham Young University, Provo, Utah 84602, USA. ; 1] Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322, USA [2] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA. ; 1] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA [2] Department of Psychology, Utah State University, Logan, Utah 84322, USA. ; 1] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA [2] Department of Psychology, Utah State University, Logan, Utah 84322, USA [3] Department of Family Consumer and Human Development, Utah State University, Logan, Utah 84322, USA. ; 1] Department of Family Consumer and Human Development, Utah State University, Logan, Utah 84322, USA [2] Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah 84322, USA. ; Department of Human Genetics, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; 1] Alzheimer's Disease Research Center, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [2] Department of Neurology, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; Department of Psychiatry, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; Human Genetics, School of Molecular Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK. ; Queen's University Belfast, University Road, Belfast BT7 1NN, UK. ; Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3NE, UK. ; University of Bonn, Regina-Pacis-Weg 3, 53113 Bonn, Germany. ; University of Bristol, Tyndall Avenue, Bristol, City of Bristol BS8 1TH, UK. ; University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, UK. ; University of Newcastle, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK. ; University of Manchester, Oxford Road, Manchester, Greater Manchester M13 9PL, UK. ; University of Oxford (OPTIMA), Wellington Square, Oxford OX1 2JD, UK. ; 1] Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Avenida Pio XII, 55. 31008 Pamplona, Navarra, Spain [2] Department of Neurology, Clinica Universidad de Navarra, School of Medicine, University of Navarra Avenida Pio XII, 36. 31008 Pamplona, Spain [3] CIBERNED, Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain. ; Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Avenida Pio XII, 55. 31008 Pamplona, Navarra, Spain. ; University of Washington, 325 Ninth Avenue, Seattle, Washington 98104-2499, USA. ; The Scripps Research Institute, La Jolla, California 3344 North Torrey Pines Court, La Jolla, California 92037, USA. ; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada. ; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35 Room 1A1014, 35 Lincoln Drive, Bethesda, Maryland 20892, USA. ; 1] Department of Human Genetics, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [2] Alzheimer's Disease Research Center, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [3] Department of Neurology, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; 1] Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada [2] Cambridge Institute for Medical Research, and the Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. ; 1] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Pathology and Immunology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Pathology and Immunology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Department of Neurology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3] Knight ADRC, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3] Department of Neurology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [4] Knight ADRC, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [5] Department of Genetics, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336208" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; Age of Onset ; Aged ; Aged, 80 and over ; Alzheimer Disease/*genetics/metabolism ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Brain/metabolism ; Case-Control Studies ; Europe/ethnology ; Exome/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Humans ; Male ; Peptide Fragments/metabolism ; Phospholipase D/deficiency/*genetics/metabolism ; Protein Processing, Post-Translational/genetics ; Proteolysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-20
    Description: Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD, NDD, and CA but only 2% of patients with isolated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in RBFOX2, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal shared genetic contributions to CHD, NDD, and CA and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Homsy, Jason -- Zaidi, Samir -- Shen, Yufeng -- Ware, James S -- Samocha, Kaitlin E -- Karczewski, Konrad J -- DePalma, Steven R -- McKean, David -- Wakimoto, Hiroko -- Gorham, Josh -- Jin, Sheng Chih -- Deanfield, John -- Giardini, Alessandro -- Porter, George A Jr -- Kim, Richard -- Bilguvar, Kaya -- Lopez-Giraldez, Francesc -- Tikhonova, Irina -- Mane, Shrikant -- Romano-Adesman, Angela -- Qi, Hongjian -- Vardarajan, Badri -- Ma, Lijiang -- Daly, Mark -- Roberts, Amy E -- Russell, Mark W -- Mital, Seema -- Newburger, Jane W -- Gaynor, J William -- Breitbart, Roger E -- Iossifov, Ivan -- Ronemus, Michael -- Sanders, Stephan J -- Kaltman, Jonathan R -- Seidman, Jonathan G -- Brueckner, Martina -- Gelb, Bruce D -- Goldmuntz, Elizabeth -- Lifton, Richard P -- Seidman, Christine E -- Chung, Wendy K -- T32 HL007208/HL/NHLBI NIH HHS/ -- Arthritis Research UK/United Kingdom -- British Heart Foundation/United Kingdom -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1262-6. doi: 10.1126/science.aac9396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. NIHR Cardiovascular Biomedical Research Unit at Royal Brompton & Harefield NHS Foundation and Trust and Imperial College London, London, UK. National Heart & Lung Institute, Imperial College London, London, UK. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Cardiology, University College London and Great Ormond Street Hospital, London, UK. ; Department of Pediatrics, University of Rochester Medical Center, The School of Medicine and Dentistry, Rochester, NY, USA. ; Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Steven and Alexandra Cohen Children's Medical Center of New York, New Hyde Park, NY, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA. ; Department of Neurology, Columbia University Medical Center, New York, NY, USA. ; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA. ; Department of Cardiology, Children's Hospital Boston, Boston, MA, USA. ; Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI, USA. ; Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada. ; Department of Cardiology, Boston Children's Hospital, Boston, MA, USA. ; Department of Pediatric Cardiac Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. ; Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA. ; Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. Cardiovascular Division, Brigham & Women's Hospital, Harvard University, Boston, MA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785492" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/abnormalities/metabolism ; Child ; Congenital Abnormalities/genetics ; Exome/genetics ; Heart Defects, Congenital/*diagnosis/*genetics ; Humans ; Mutation ; Nervous System Malformations/*genetics ; Neurogenesis/*genetics ; Prognosis ; RNA Splicing/genetics ; RNA, Messenger/genetics ; RNA-Binding Proteins/genetics ; Repressor Proteins/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 45 (1989), S. 1490-1493 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-09
    Description: The triggering receptor expressed on myeloid 2 ( TREM2 ) is an immune phagocytic receptor expressed on brain microglia known to trigger phagocytosis and regulate the inflammatory response. Homozygous mutations in TREM2 cause Nasu–Hakola disease, a rare recessive form of dementia. A heterozygous TREM2 variant, p.R47H, was recently shown to increase Alzheimer’'s disease (AD) risk. We hypothesized that if TREM2 is truly an AD risk gene, there would be additional rare variants in TREM2 that substantially affect AD risk. To test this hypothesis, we performed pooled sequencing of TREM2 coding regions in 2082 AD cases and 1648 cognitively normal elderly controls of European American descent. We identified 16 non-synonymous variants, six of which were not identified in previous AD studies. Two variants, p.R47H [ P = 9.17 x 10 –4 , odds ratio (OR) = 2.63 (1.44–4.81)] and p.R62H [ P = 2.36 x 10 –4 , OR = 2.36 (1.47–3.80)] were significantly associated with disease risk in single-variant analyses. Gene-based tests demonstrate variants in TREM2 are genome-wide significantly associated with AD [ P SKAT-O = 5.37 x 10 –7 ; OR = 2.55 (1.80–3.67)]. The association of TREM2 variants with AD is still highly significant after excluding p.R47H [ P SKAT-O = 7.72 x 10 –5 ; OR = 2.47 (1.62–3.87)], indicating that additional TREM2 variants affect AD risk. Genotyping in available family members of probands suggested that p.R47H ( P = 4.65 x 10 –2 ) and p.R62H ( P = 6.87 x 10 –3 ) were more frequently seen in AD cases versus controls within these families. Gel electrophoresis analysis confirms that at least three TREM2 transcripts are expressed in human brains, including one encoding a soluble form of TREM2.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-13
    Description: [1]  A novel approach for estimating marine boundary-layer cloud base height (CBH) is proposed based on calculated boundary-layer lapse rates, collocated cloud top height (CTH), cloud top and ocean surface temperatures from the A-Train satellite constellation. The method takes advantage of the assumption that decreases of temperature within and below water clouds may follow the different constant apparent lapse rates in the same region, respectively. The CBHs derived from the new method compare well with the coincident CBH product from the active sensors of CALIPSO and CloudSat. The correlation coefficient, mean difference and standard deviation (STD) are 0.79 (0.54), 0.02 km (0.03 km) and ±0.35 km (±0.54 km) when CTH is derived from CALIPSO data (or MODIS retrieval). Besides the relatively small bias, the most important advantage of this method compared to previous CBH retrieval techniques is independent of boundary layer cloud types, optical thickness and illumination.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-10-15
    Print ISSN: 0108-2701
    Electronic ISSN: 1600-5759
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...