ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-12-13
    Description: Past ice dynamics are so far only poorly resolved in the southern Weddell Sea. This is highlighted by previous studies that led to two contradicting scenarios for the grounding line location during the Last Glacial Maximum (LGM), which differed by up to ~650 km. Another study suggested that the maximum ice extent locally was not reached during the LGM but in the early Holocene, indicating that there was also a highly dynamic ice sheet system during deglaciation. There is ambiguity about the history of ice advance and retreat in the region offshore Brunt Ice Shelf based on current data. Only one radiocarbon dated marine geological core is available, contains age reversals, and can be interpreted as indicating ice free conditions during the LGM or having been overrun by grounded ice between 30.2-20.3 cal ka BP. Today, the Brunt Ice Shelf itself is a focus of interest due to the critical crack/fracture development since 2016. This endangers Halley research station, which is situated on the ice shelf, and has resulted in the third consecutive year of austral winter closure. Geophysical ice shelf investigations revealed that, unlike usual ice shelves, the Brunt Ice Shelf consists of numerous blocks of meteoric/glacial ice that are “glued” together by freezing sea ice and snow drift. It is hypothesized that the Brunt Ice Shelf sustains its stability due to buttressing at the McDonald Ice Rumples, which form the only remaining ice shelf pinning point. Improved understanding of the past development of the ice shelf system may also aid understanding the processes active today. We investigated hydroacoustic data that were acquired offshore Brunt Ice Shelf over the last decades with RV Polarstern and RRS James Clark Ross for geomorphological indications of past ice sheet dynamics. The identified landforms show that major ice discharge during the LGM was not via Brunt Basin just in front of the modern-day Brunt Ice Shelf, but via an ice stream that occupied Stancomb-Wills Trough, which is located northeast of Brunt Ice Shelf and extends about 200 km upstream of the modern-day grounding line. We identified at least three still stand phases during retreat in this trough. Marine geological data revealed a minimum age for grounding line retreat before 8.5 cal ka BP. In contrast, we found no indications of fast flowing ice in Brunt Basin. Instead, we infer slow flowing, cold-based ice and found uniquely formed ramp-shaped bedforms. We suggest that these ramps were formed due to the unusual structure of the ice shelf, which led to temporary grounding of ice shelf keels that acted as buttressing points for a more extensive ice shelf in the past. We will present the new ice sheet reconstruction and will discuss the formation process of the ramps.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-10
    Description: The glacial history of the Antarctic Ice Sheet in the Weddell Sea embayment during the Last Glacial Maximum (LGM; 23-19 ka) is a matter of debate. Existing onshore and offshore data suggest two alternative reconstructions for the LGM ice sheet extent. One scenario shows an ice sheet grounding line that had advanced to (or at least close to) the shelf edge throughout the Weddell Sea, embayment. The other reconstruction concludes that the grounding line in the two main cross shelf troughs was located only slightly farther offshore than today. Here we present new data from multibeam swath bathymetry surveys, acoustic sub-bottom profiles and sediment cores collected during recent and past British and German marine expeditions. These data provide new constraints on the glacial history of the eastern part of the Weddell Sea embayment. A previously unknown, stacked grounding zone wedge discovered in the outer shelf part of Filchner Trough possibly marks the northernmost position of the LGM grounding line within this palaeo-ice stream trough. Crescentic moraines and a predominantly smooth seabed morphology mapped north of the Brunt Ice Shelf reveal a complex glacial history with repeated advances of grounded ice or episodic retreats, controlled by a hard seafloor substrate. We will compare new radiocarbon dates obtained from the sediment cores to existing chronologies and use them to reconstruct the timing of the last maximum ice sheet advance and post-LGM retreat. Finally, we will set our new findings into context with results from ice sheet models and discuss their implications for Antarctica's contribution to global meltwater pulses during the last deglaciation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-21
    Description: Past ice sheet conditions in the southern Weddell Sea remain poorly known. Previous studies have led to contradicting scenarios of maximum ice extent during the Last Glacial Maximum (LGM). Scenario A is mainly based on terrestrial data indicating limited ice sheet thickening in the hinterland and suggests a LGM grounding-line position on the inner shelf. Scenario B is based on marine geological/-physical data and concludes that the grounding line was located on the outer shelf (~650 km further offshore than in scenario A). In addition, studies suggest a complex history of ice retreat and drainage pattern since the LGM that needs further constraint. We investigated hydroacoustic data acquired during 18 expeditions. A key finding is a previously unknown stacked grounding zone wedge (GZW) located in Filchner Trough on the outer shelf showing that a palaeo-ice stream stabilized at this position at least twice. Radiocarbon dates from sediment cores indicate that (i) the GZW was formed in the early Holocene and (ii) grounded ice did not extend seaward at the LGM. Hence, the grounding line in Filchner Trough experienced dynamic changes in the Holocene and ice sheet retreat after the LGM was not linear. Ice-flow switches in the hinterland changing the drainage pattern of the West and East Antarctic Ice Sheets possibly explain this behaviour. In addition, new data were acquired in the southern Weddell Sea during expedition PS111 with RV Polarstern in Jan-Mar 2018. We intend to provide a brief update on the ongoing work and show some preliminary results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...