ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The Combustion-Heated Scramjet Test Facility (CHSTF) is described together with its modifications. The expanded simulation capabilities of the facility are documented. Nozzle exit surveys and tunnel calibration information are presented. It is noted that these modifications included a new heat-sink nickel liner heater, a new Mach 4.7 nozzle, and a new 70-ft vacuum sphere exhaust system. It is found that the facility in the air ejector mode of operation performed similarly to that prior to the addition of the vacuum sphere ducting.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AIAA PAPER 91-2502
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2009-215942 , LF99-8616 , L-19767
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The NASA Langley 8-Foot High Temperature Tunnel has recently been modified to produce a unique testing capability for hypersonic airbreathing propulsion systems. Prior to these modifications, the facility was used primarily for aerothermal loads and structural verification testing at true flight total enthalpy conditions for Mach numbers between 6 and 7. One of the recent modifications was an oxygen replenishment system which allows operating airbreathing propulsion systems to be tested at true flight total enthalpies. Following the modifications to the facility, calibration runs were performed at total enthalpies corresponding to flight Mach numbers of 6.3 and 6.8 to establish the flow characteristics of the facility with its new capabilities. The results of this calibration, as well as modifications to tunnel combustor hardware prior to calibration to improve tunnel flow quality, are described in this paper.
    Keywords: Research and Support Facilities (Air)
    Type: AIAA Paper 96-2197 , 19th AIAA Advanced Measurement and Ground Testing Technology Conference; Jun 17, 1996 - Jun 20, 1996; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Airframe-integrated scramjet engine tests have 8 completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe- integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.
    Keywords: Aerodynamics
    Type: AIAA Paper 2000-3605 , 36th Joint Propulsion Conference; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Airframe-integrated scramjet engine tests have been completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration, and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2000-3605 , Joint Propulsion Conference; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The NASA Langley Scramjet Test Complex consists of five propulsion facilities which cover a wide spectrum of supersonic combustion ramjet (scramjet) test capabilities. These facilities permit observation of the effects on scramjet performance of speed and dynamic pressure from Mach 3.5 to near-orbital speeds, engine size from Mach 4 to 7, and test gas composition from Mach 4 to 7. In the Mach 3.5 to 8 speed range, the complex includes a direct-connect combustor test facility, two small-scale complete engine test facilities, and a large-scale complete engine test facility. In the hypervelocity speed range, a shock-expansion tube is used for combustor tests from Mach 12 to Mach 17+. This facility has recently been operated in a tunnel mode, to explore the possibility of semi-free-jet testing of complete engine modules at hypervelocity conditions. This paper presents a description of the current configurations and capabilities of the facilities of the NASA Langley Scramjet Test Complex, reviews the most recent scramjet tests in the facilities, and discusses comparative engine tests designed to gain information about ground facility effects on scramjet performance.
    Keywords: Research and Support Facilities (Air)
    Type: NASA-TM-111658 , NAS 1.15:111658 , AIAA Paper 96-3243 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 01, 1996; Lake Buena Vista, FL; United States|AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 01, 1996 - Jul 03, 1996; Lake Buena Vista, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: A calibration of the Arc-Heated Scramjet Test Facility (AHSTF) Mach 4.7 and Mach 6 nozzles was performed in 1998. For each nozzle, three different typical facility operating test points were selected for calibration. Each survey consisted of measurements, at 340 separate locations across the 11 inch square nozzle exit plane, of pitot pressure, static pressure, and total temperature. Measurement density was higher (4/inch) in the boundary layer near the nozzle wall than in the core nozzle flow (1/inch). The results generated for each of these calibration surveys were contour plots at the nozzle exit plane of the measured and calculated flow properties which completely defined the thermodynamic state of the nozzle exit flow. An area integration of the mass flux at the nozzle exit for each survey was compared to the AHSTF mass flow meter results to provide an indication of the overall quality of the calibration performed. The percent difference between the integrated nozzle exit mass flow and the flow meter ranged from 0.0 to 1.3 percent for the six surveys. Finally, a comparison of this 1998 calibration was made with the 1986 calibration. Differences of less than 10 percent were found within the nozzle core flow while in the boundary layer differences on the order of 20 percent were quite common.
    Keywords: Research and Support Facilities (Air)
    Type: NASA/TM-2004-213250 , L-19037
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: The level of nitric oxide contamination in the test gas of the NASA Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. The study was conducted for standard facility conditions corresponding to Mach 6, 7, and 8 flight simulations. The analytically determined levels of nitric oxide produced in the facility are compared with experimentally measured levels. Results of the analysis indicate that nitric oxide levels range from one to three mole percent, which corroborates the measured levels. A three-stream combustor code with finite rate chemistry was used to investigate how nitric oxide affects scramjet performance in terms of combustor pressure rise, heat release, and thrust performance. Results indicate minimal effects on engine performance for the test conditions of this investigation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 95-2524
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: The level of nitric oxide contamination in the test gas of the Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. A finite rate chemical analysis was performed to determine the levels of nitric oxide produced in the facility at conditions corresponding to Mach 6 to 8 flight simulations. Results indicate that nitric oxide levels range from one to three mole percent, corroborating previously obtained measurements. A three-stream combustor code with finite rate chemistry was used to investigate the effects of nitric oxide on scramjet performance. Results indicate that nitric oxide in the test gas causes a small increase in heat release and thrust performance for the test conditions investigated. However, a rate constant uncertainty analysis suggests that the effect of nitric oxide ranges from no net effect, to an increase of about 10 percent in thrust performance.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TP-2003-212159 , NAS 1.60:212159 , L-18226
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Airframe-integrated scramjet engine testing has been completed at Mach 7 flight conditions in the NASA Langley 8-Foot High Temperature Tunnel as part of the NASA Hyper-X program. This test provided engine performance and operability data, as well as design and database verification, for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet data in flight. The Hyper-X Flight Engine, a duplicate Mach 7 X-43 scramjet engine, was mounted on an airframe structure that duplicated the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle trailing edge. This model was also tested to verify and validate the complete flight-like engine system. This paper describes the subsystems that were subjected to flight-like conditions and presents supporting data. The results from this test help to reduce risk for the Mach 7 flights of the X-43.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2001-1809 , 10th International Space Planes and Hypersonic Systems and Technologies Conference; Apr 24, 2001 - Apr 27, 2001; Kyoto; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...