ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-01-01
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-09-01
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-05-01
    Print ISSN: 0045-7930
    Electronic ISSN: 1879-0747
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The multigrid properties of two data reconstruction methods used for achieving second-order spatial accuracy when solving the two-dimensional Euler equations are examined. The data reconstruction methods are used with an implicit upwind algorithm which uses linearized backward-Euler time-differencing. The solution of the resulting linear system is performed by an iterative procedure. In the present study only regular quadrilateral grids are considered, so a red-black Gauss-Seidel iteration is used. Although the Jacobian is approximated by first-order upwind extrapolation, two alternative data reconstruction techniques for the flux integral that yield higher-order spatial accuracy at steady state are examined. The first method, probably most popular for structured quadrilateral grids, is based on estimating the cell gradients using one-dimensional reconstruction along curvilinear coordinates. The second method is based on Green's theorem. Analysis and numerical results for the two dimensional Euler equations show that data reconstruction based on Green's theorem has superior multigrid properties as compared to the one-dimensional data reconstruction method.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The Sixth Copper Mountain Conference on Multigrid Methods, Part 2; p 663-677
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-05
    Description: The year 1971 saw the publication of one of the landmark papers in computational aerodynamics, that of Murman and Cole. As with many seminal works, its significance lies not so much in the specific problem that it addressed| small disturbance, plane transonic flow - but in the identification of a general approach to the solution of a technically important and theoretically difficult problem. The key features of Murman and Cole's work were the use of type- dependent differencing to correctly account for the proper domain of dependence of a mixed elliptic/hyperbolic equation, and the introduction of line relaxation to solve the steady flow equation. All subsequent work in transonic potential flows was based on these concepts. Jameson extended Murman and Cole's ideas to the full potential equation with two important contributions. First, he introduced the rotated difference stencil, which generalized the Murman and Cole type-dependent difference operator to general coordinates. Second, he used the interpretation, introduced by Garabedian, of relaxation as an iteration in artificial time to construct stable relaxation schemes, generalizing the original line relaxation method of Reference. The decade of the 1970s saw an explosion of activity in the solution of transonic potential flows, which has been summarized in the review article of Caughey.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: An account is given of CFD methods deemed likely to yield aerodynamic drag prediction improvements. Improvements in drag prediction are noted to largely proceed from improvements in viscous-layer resolution. Geometric modeling and grid generation are acknowledged to be major pacing items, and may be more important than turbulence modeling. The use of upwind differencing has led to improved solution accuracy due to the nature of the artificial viscosity in cases involving shocks and nonphysical dissipation across viscous layers. Multiblock algorithms will allow more complex geometries to be treated.
    Keywords: AERODYNAMICS
    Type: SAE PAPER 901932
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: This paper presents a new algorithm for the solution of the steady Euler equations in two-dimensional flow. It uses an upwind control volume approach in which a standard flux residual on triangular cells is distributed with a downwind bias. The resulting scheme is second order accurate on unstructured triangular meshes and produces sharp shocks without the addition of any shock smoothing. Results demonstrate its performance on a standard AGARD test case using both smooth and irregular unstructured meshes.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 90-0104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Truncation error and stability properties of several implicit upwind schemes for the two-dimensional Euler equations are examined. The schemes use linear data reconstruction methods to achieve second-order flux integrations where the implicit Jacobian operators are first order. The stability properties of the schemes are examined by a Von Neumann analysis of the linearized, constant-coefficient Euler equations. The choice of the data reconstruction method used to evaluate the flux integral has a dramatic effect on the convergence properties of the implicit solution method. In particular, the typical one-dimensional data reconstruction methods used with structured grids exhibit poor convergence properties compared to the unstructured grid method considered. Of the schemes examined, the one with the superior convergence properties is well-suited for both unstructured and structured grids, which has important implications for the design of implicit methods.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 93-3379 , In: AIAA Computational Fluid Dynamics Conference, 11th, Orlando, FL, July 6-9, 1993, Technical Papers. Pt. 2 (A93-44994 18-34); p. 870-879.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A new algorithm for the numerical solution of the Euler equations is presented. This algorithm is particularly suited to the use of unstructured triangular meshes, allowing geometric flexibility. Solutions are second-order accurate in the steady state. Implementation of the algorithm requires minimal grid connectivity information, resulting in modest storage requirements, and should enhance the implementation of the scheme on massively parallel computers. A novel form of upwind differencing is developed, and is shown to yield sharp resolution of shocks. Two new artificial viscosity models are introduced that enhance the performance of the new scheme. Numerical results for transonic airfoil flows are presented, which demonstrate the performance of the algorithm.
    Keywords: AERODYNAMICS
    Type: NASA-TM-101664 , NAS 1.15:101664
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...