ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019-10-11
    Description: Frontal ablation is a major component of the mass budget of calving glaciers, strongly affecting their dynamics. Most global-scale ice volume estimates to date still suffer from considerable uncertainties related to (i) the implemented frontal ablation parameterization or (ii) not accounting for frontal ablation at all in the glacier model. To improve estimates of the ice thickness distribution of glaciers, it is thus important to identify and test low-cost and robust parameterizations of this process. By implementing such parameterization into the ice thickness estimation module of the Open Global Glacier Model (OGGM v1.1.2), we conduct a first assessment of the impact of accounting for frontal ablation on the estimate of ice stored in glaciers in Alaska. We find that inversion methods based on mass conservation systematically underestimate the mass turnover and, therefore, the thickness of tidewater glaciers when neglecting frontal ablation. This underestimation can amount to up to 19 % on a regional scale and up to 30 % for individual glaciers. The effect is independent of the size of the glacier. Additionally, we perform different sensitivity experiments to study the influence of (i) a constant of proportionality (k) used in the frontal ablation parameterization, (ii) Glen's temperature-dependent creep parameter (A) and (iii) a sliding velocity parameter (fs) on the regional dynamics of Alaska tidewater glaciers. OGGM is able to reproduce previous regional frontal ablation estimates, applying a number of combinations of values for k, Glen's A and fs. Our sensitivity studies also show that differences in thickness between accounting for and not accounting for frontal ablation occur mainly at the lower parts of the glacier, both above and below sea level. This indicates that not accounting for frontal ablation will have an impact on the estimate of the glaciers' potential contribution to sea-level rise. Introducing frontal ablation increases the volume estimate of Alaska marine-terminating glaciers from 9.18±0.62 to 10.61±0.75 mm s.l.e, of which 1.52±0.31 mm s.l.e (0.59±0.08 mm s.l.e when ignoring frontal ablation) are found to be below sea level.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-23
    Description: Despite of their importance for sea-level rise, seasonal water availability, and as source of geohazards, mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Here we present the Open Global Glacier Model (OGGM, http://www.oggm.org), developed to provide a modular and open source numerical model framework for simulating past and future change of any glacier in the world. The modelling chain comprises data downloading tools (glacier outlines, topography, climate, validation data), a preprocessing module, a mass-balance model, a distributed ice thickness estimation model, and an ice flow model. The monthly mass-balance is obtained from gridded climate data and a temperature index melt model. To our knowledge, OGGM is the first global model explicitly simulating glacier dynamics: the model relies on the shallow ice approximation to compute the depth-integrated flux of ice along multiple connected flowlines. In this paper, we describe and illustrate each processing step by applying the model to a selection of glaciers before running global simulations under idealized climate forcings. Even without an in-depth calibration, the model shows a very realistic behaviour. We are able to reproduce earlier estimates of global glacier volume by varying the ice dynamical parameters within a range of plausible values. At the same time, the increased complexity of OGGM compared to other prevalent global glacier models comes at a reasonable computational cost: several dozens of glaciers can be simulated on a personal computer, while global simulations realized in a supercomputing environment take up to a few hours per century. Thanks to the modular framework, modules of various complexity can be added to the codebase, allowing to run new kinds of model intercomparisons in a controlled environment. Future developments will add new physical processes to the model as well as tools to calibrate the model in a more comprehensive way. OGGM spans a wide range of applications, from ice-climate interaction studies at millenial time scales to estimates of the contribution of glaciers to past and future sea-level change. It has the potential to become a self-sustained, community driven model for global and regional glacier evolution.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-08
    Description: Despite their importance for sea-level rise, seasonal water availability, and as a source of geohazards, mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable, open source, community-driven model exists. Here we present the Open Global Glacier Model (OGGM), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world. The modeling chain comprises data downloading tools (glacier outlines, topography, climate, validation data), a preprocessing module, a mass-balance model, a distributed ice thickness estimation model, and an ice-flow model. The monthly mass balance is obtained from gridded climate data and a temperature index melt model. To our knowledge, OGGM is the first global model to explicitly simulate glacier dynamics: the model relies on the shallow-ice approximation to compute the depth-integrated flux of ice along multiple connected flow lines. In this paper, we describe and illustrate each processing step by applying the model to a selection of glaciers before running global simulations under idealized climate forcings. Even without an in-depth calibration, the model shows very realistic behavior. We are able to reproduce earlier estimates of global glacier volume by varying the ice dynamical parameters within a range of plausible values. At the same time, the increased complexity of OGGM compared to other prevalent global glacier models comes at a reasonable computational cost: several dozen glaciers can be simulated on a personal computer, whereas global simulations realized in a supercomputing environment take up to a few hours per century. Thanks to the modular framework, modules of various complexity can be added to the code base, which allows for new kinds of model intercomparison studies in a controlled environment. Future developments will add new physical processes to the model as well as automated calibration tools. Extensions or alternative parameterizations can be easily added by the community thanks to comprehensive documentation. OGGM spans a wide range of applications, from ice–climate interaction studies at millennial timescales to estimates of the contribution of glaciers to past and future sea-level change. It has the potential to become a self-sustained community-driven model for global and regional glacier evolution.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-10
    Description: Frontal ablation is a major component of the mass budget of tidewater glaciers, strongly affecting their dynamics. Most global scale ice volume estimates to date still suffer from considerable uncertainties related to i) the implemented frontal ablation parameterisation or ii) for not accounting for frontal ablation at all in the glacier model. To improve estimates of the ice thickness distribution of glaciers it is thus important to identify and test low-cost and robust parameterisations of this fundamental process. By implementing such parameterisation into the ice-thickness estimation module of the Open Global Glacier Model (OGGM v1.0.1), we conduct a first assessment of the impact of accounting for frontal ablation on the estimate of ice stored in glaciers in Alaska. We find that inversion methods based on mass conservation systematically underestimate the mass turnover (and therefore the thickness) of tidewater glaciers when neglecting frontal ablation. This underestimation can rise up to 17 % on a regional scale and up to 47 % for individual glaciers. The effect strongly depends on the size of the glacier. Additionally, we perform different sensitivity experiments to study the influence of i) a constant of proportionality (k) used in the frontal ablation parameterisation, ii) Glen's temperature-dependent creep parameter (A) and iii) a sliding velocity parameter (fs) on the regional dynamics of Alaska marine-terminating glaciers. OGGM is able to reproduce previous regional frontal ablation estimates applying a number of combinations of values for k, Glen's A and fs. These different model configurations show that volume estimates after accounting for frontal ablation are 15 to 17 % higher than volume estimates ignoring frontal ablation. Our sensitivity studies also show that differences in thickness between accounting for and not accounting for frontal ablation occur mainly at the lower parts of the glacier, both above and below sea level. This indicates that not accounting for frontal ablation will have an impact on the estimate of the glaciers' potential contribution to sea-level rise. Introducing frontal ablation increases the volume estimate of Alaska marine-terminating glaciers from 9.01 ± 0.35 to 10.43 ± 0.44 mm. SLE, of which 1.41 ± 0.18 mm. SLE (0.58 ± 0.05 mm. SLE when ignoring frontal ablation) are found to be below sea level.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...