ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 692 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: angiotensin receptors ; norepinephrine ; α1-adrenergic receptors ; neurons ; cell culture ; WKY ; SH rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Neuronal cells from Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rat brains were established in culture to compare the expression of angiotensin II (Ang II) specific receptors and their regulation by norepinephrine (NE). Neurons from SH rat brains possess twice more Ang II specific receptors and expressed a proportional increase in Ang II stimulated [3H]-NE uptake compared with WKY neurons. NE caused a dose-dependent decrease in125I-Ang II binding in WKY neurons, an effect not observed when neurons from SH rat brains were incubated with NE. These observations suggest that the lack of NE-induced downregulation of Ang II receptors in neuronal cultures is genetically regulated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6830
    Keywords: neuron ; brain cell culture ; insulin ; receptors ; fluoroscein-labeled insulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Primary cultures of fetal rat brain consist of monolayer of large, flat cells of nonneuronal origin and smaller phase dark cells. 2. Neuron-specific enolase antibody was used to identify immunoreactive cells as neurons and these were present singly or in clusters on top of nonneuronal cells. 3. Incubation of these cultures with fluorescein-labelled insulin (FTC-insulin) resulted in the staining of 5-10% cells in a bright patchy green pattern, which are of neuronal and of nonneuronal morphology. 4. A faint green staining was seen when cultures were incubated with an excess of unconjugated insulin and FTC-insulin indicating that unconjugated insulin competes for the binding of fluorescein-insulin. 5. These results indicate that specific binding sites for insulin are present both on neurons and on nonneuronal cells in cultures of fetal rat brain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 28 (1985), S. 59-67 
    ISSN: 0730-2312
    Keywords: insulin receptors ; cell culture ; db/db mouse ; density shift technique ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The turnover of surface insulin receptors in fibroblastic cultures from genetically diabetic (db/db) mice and nondiabetic (m/m) littermates has been determined by combining a heavy isotope density shift technique with cross-linking of insulin to surface receptors. Our results indicate that the surface insulin receptors turn over faster in diabetic cells than in nondiabetic cells. In addition, fewer receptors are incorporated into the plasma membrane per hour in diabetic cells than in nondiabetic cells. It is possible to propose a model to account for the altered expression of surface insulin receptors in diabetic cells on the basis of abnormalities of receptor incorporation and turnover.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 11 (1979), S. 547-561 
    ISSN: 0091-7419
    Keywords: insulin receptors ; 125I-insulin binding ; microtubules and microfilaments ; cultured fibroblasts ; local anesthetics ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Tertiary amine local anesthetics cause a time- and dose-dependent, reversible increase in insulin binding sites in cultured chick embryo fibroblasts. Incubation of fibroblasts with 0.2 mM dibucaine for 3 h at 37°C results in a twofold to threefold increase in insulin binding, with an increase in average number of binding sites (Ka = 3.0 × 107M-1) from 9 × 103 to 29 × 103 per cell. Trypsin or ethylenegly coltetraacetic acid (EGTA) alone increases insulin binding twofold to threefold, but fails to further increase 125I-insulin binding in cells pretreated with dibucaine. Transformation of chick embryo fibroblasts with Rous sarcoma virus causes a threefold to fivefold increase in insulin binding, which is not further increased by incubation with dibucaine. As demonstrated by transmission electron microscopy, dibucaine and trypsin also induce changes in the cytoskeleton of chick embryo fibroblasts, characterized by disorganization and disappearance of microfilament and microtubule bundles. These alterations are accompanied by gross morphologic changes, including rounding of cells and appearance of numerous ruffles and blebs on the cell surface. These observations are consistent with the hypothesis that expression of surface receptors in cultured chick embryo fibroblasts is related to the organization and disorganization of cytoskeletal structures.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 14 (1980), S. 499-509 
    ISSN: 0091-7419
    Keywords: fibroblasts ; diabetic mice ; insulin ; deoxy D-glucose ; ornithine decarboxylase ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fibroblastic cultures from the skin of nondiabetic and diabetic (db/db) mice have been used to investigate alterations in the biological responses of diabetic cells to insulin. Confluent cultures from the skin of both nondiabetic and diabetic animals possess specific receptors for insulin. Diabetic fibroblasts exhibit only 36% as much specific binding of insulin as nondiabetic fibroblasts, because of a decrease in the total number of binding sites, without a change in binding affinity. Insulin caused a time- and dose-dependent increase in the rate of 2-deoxy D-glucose (dGlc) uptake and in ornithine decarboxylase (ODC) activity of both nondiabetic and diabetic fibroblasts. In nondiabetic cells, half-maximal increase in dGlc uptake was obtained with 0.3 nM insulin, and a maximum increase of 120% was obtained with 4.1 nM insulin. In contrast, diabetic cultures required 0.8 nM insulin for a half-maximal increase in dGlc uptake, and maximum stimulation with 4.1 nM insulin was only 50% above control levels. With 4-fold higher insulin concentrations, ODC activity of diabetic cells was only 40% that of nondiabetic cells. In nondiabetic cells, down regulation of insulin receptors by insulin abolished the ability of insulin to stimulate dGlc uptake. These results demonstrate that cells cultured from diabetic animals, which possess a decreased number of insulin receptors, also exhibit decreased stimulation of deoxy D-glucose uptake and ornithin decarboxylase activity by insulin.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1982-03-01
    Print ISSN: 0272-4340
    Electronic ISSN: 1573-6830
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1989-01-01
    Print ISSN: 0300-8177
    Electronic ISSN: 1573-4919
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-11-19
    Description: Abstract 2637 Purpose: RAS plays a vital role in regulating many physiological processes of the vascular system. Angiotensin II (Ang II), a product of angiotensin converting enzyme (ACE), mediates its effects through activation of either the AT1 receptor – to induce vasoconstriction, proliferation, fibrosis, and inflammation – or the AT2 receptor to promote NO generation. The protective arm of RAS involves ACE2, which produces angiotensin-(1-7) [Ang-(1-7)]. Ang-(1-7) activates the MAS receptor to promote vascular health. Because diabetic endothelial progenitor cells are dysfunctional and this limits their utility in autologous cell therapy, we asked whether angiotensin (Ang)-(1-7) could restore the vasoreparative function of diabetic CD34+cells. Methods: Healthy nondiabetic (ND) and diabetic (D) Lin−CD45midCD34+ cells were obtained from peripheral blood mononuclear cells (PB-MNCs) by FACS. The effect of Ang-(1-7) on migration, proliferation, NO bioavailability, reactive oxygen species (ROS) levels and NADPH oxidase activity were evaluated in ND- and D-CD34+ cells. The effect of Ang-(1-7) on the formation of ECFCs from ND- and D-MNCs was evaluated. Ang-(1-7) production by cells was analyzed and the expression of ACE2 and Mas-receptor were assessed by real-time PCR and flow cytometry. Effects of ACE2 activators XNT and DIZE in CD34+ cells were also evaluated. D-CD34+ cells were genetically modified to overexpress Ang-(1-7) by lentiviral Ang-(1-7)-fusion transgene and their function was evaluated in vitro. The effect of transduction on the surface expression of CD133, CD34 and CD309 was assessed. In vivo homing function was assessed in a mouse model of ischemia-reperfusion (I/R). After one week of I/R insult, when retinal capillary damage was appreciable, CD34 cells were intravitreally injected. Neural retinas were harvested after 48 hours and human cells within the mouse vasculature were localized by immunohistochemistry. Results: Migration to SDF1- and VEGF-were impaired in D-CD34+ cells. In contrast, Ang-(1-7)-induced migration in both D-CD34+ and ND-CD34+cells was dependent on Mas receptor expression and eNOS. ROS levels and NADPH oxidase activity were reduced and proliferation and NO bioavailability were restored in D-CD34+ cells by Ang-(1-7). ECFCs from D-MNCs were appeared only in the presence of Ang-(1-7). Migration, NO release and Ang-(1-7) release by ACE2 activators, XNT and DIZE, were significantly decreased in D-CD34+ cells. Ang-(1-7) release and ACE2 expression were decreased in D-cells while Mas-receptor expression was similar that in ND-cells. Ang-(1-7) gene-modified cells showed reduced ROS levels, increased NO bioavailability, enhanced migration to SDF-1 and proliferation. Lentiviral transduction did not alter surface expression of CD133, CD34 and CD309. Ang-(1-7)-overexpression restored the homing efficiency of D-CD34+ cells similar to that of ND-CD34+ cells in vivo. Conclusions: Ang-(1-7) stimulates the vasoreparative functions in CD34+ cells. Ang-(1-7) bypasses the reduced ACE2 seen in diabetic CD34+ cells and restores the vasoreparative potential of these cells by decreasing oxidative stress and normalizing NO bioavailability. Pharmacological strategies that either increase ACE2 or Ang-(1-7) in diabetic CD34+ cells will improve their therapeutic utility for autologous cell therapy in treatment of diabetic complications. Disclosures: No relevant conflicts of interest to declare
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...