ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-28
    Description: In order to better understand complex diseases, it is important to understand how genetic variation in the regulatory regions affects gene expression. Genetic variants found in these regulatory regions have be...
    Electronic ISSN: 1471-2105
    Topics: Biology , Computer Science
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-09-04
    Description: Microscopy shows that individual sites of DNA replication and transcription of mammalian nuclei segregate into sets of roughly 22 and 16 higher order domains, respectively. Each domain set displayed a distinct network-like appearance, including regions of individual domains and interdigitation of domains between the two networks. These data support a dynamic mosaic model for the higher order arrangement of genomic function inside the cell nuclei.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wei, X -- Samarabandu, J -- Devdhar, R S -- Siegel, A J -- Acharya, R -- Berezney, R -- GM 23922/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1502-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727975" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Line ; Cell Nucleolus/metabolism/ultrastructure ; Cell Nucleus/*metabolism/ultrastructure ; *DNA Replication ; *Genome ; Genome, Human ; Humans ; Image Processing, Computer-Assisted ; Mice ; Microscopy, Confocal ; Models, Biological ; S Phase ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-01
    Description: The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses. Binding of amantadine physically occludes the pore, and might also perturb the pK(a) of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stouffer, Amanda L -- Acharya, Rudresh -- Salom, David -- Levine, Anna S -- Di Costanzo, Luigi -- Soto, Cinque S -- Tereshko, Valentina -- Nanda, Vikas -- Stayrook, Steven -- DeGrado, William F -- R37 GM054616/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 31;451(7178):596-9. doi: 10.1038/nature06528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235504" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; Drug Resistance, Viral/genetics ; Histidine/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/genetics/metabolism ; Ion Channel Gating/drug effects ; Models, Molecular ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship ; Tryptophan/metabolism ; Viral Matrix Proteins/*antagonists & inhibitors/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-28
    Description: There is a general need for the engineering of protein-like molecules that organize into geometrically specific superstructures on molecular surfaces, directing further functionalization to create richly textured, multilayered assemblies. Here we describe a computational approach whereby the surface properties and symmetry of a targeted surface define the sequence and superstructure of surface-organizing peptides. Computational design proceeds in a series of steps that encode both surface recognition and favorable intersubunit packing interactions. This procedure is exemplified in the design of peptides that assemble into a tubular structure surrounding single-walled carbon nanotubes (SWNTs). The geometrically defined, virus-like coating created by these peptides converts the smooth surfaces of SWNTs into highly textured assemblies with long-scale order, capable of directing the assembly of gold nanoparticles into helical arrays along the SWNT axis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264056/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264056/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grigoryan, Gevorg -- Kim, Yong Ho -- Acharya, Rudresh -- Axelrod, Kevin -- Jain, Rishabh M -- Willis, Lauren -- Drndic, Marija -- Kikkawa, James M -- DeGrado, William F -- 5F32GM084631-02/GM/NIGMS NIH HHS/ -- F32 GM084631/GM/NIGMS NIH HHS/ -- F32 GM084631-02/GM/NIGMS NIH HHS/ -- GM54616/GM/NIGMS NIH HHS/ -- R37 GM054616/GM/NIGMS NIH HHS/ -- R37 GM054616-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1071-6. doi: 10.1126/science.1198841.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617073" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Computer Simulation ; Gold ; Metal Nanoparticles ; Models, Molecular ; *Nanotubes, Carbon ; Peptides/*chemistry ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Stability ; Protein Structure, Secondary ; Solubility ; Surface Properties ; Viruses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-20
    Description: The design of functional membrane proteins from first principles represents a grand challenge in chemistry and structural biology. Here, we report the design of a membrane-spanning, four-helical bundle that transports first-row transition metal ions Zn(2+) and Co(2+), but not Ca(2+), across membranes. The conduction path was designed to contain two di-metal binding sites that bind with negative cooperativity. X-ray crystallography and solid-state and solution nuclear magnetic resonance indicate that the overall helical bundle is formed from two tightly interacting pairs of helices, which form individual domains that interact weakly along a more dynamic interface. Vesicle flux experiments show that as Zn(2+) ions diffuse down their concentration gradients, protons are antiported. These experiments illustrate the feasibility of designing membrane proteins with predefined structural and dynamic properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400864/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400864/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joh, Nathan H -- Wang, Tuo -- Bhate, Manasi P -- Acharya, Rudresh -- Wu, Yibing -- Grabe, Michael -- Hong, Mei -- Grigoryan, Gevorg -- DeGrado, William F -- F32 GM096727/GM/NIGMS NIH HHS/ -- R01 GM054616/GM/NIGMS NIH HHS/ -- R01 GM088204/GM/NIGMS NIH HHS/ -- R01 GM089740/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 19;346(6216):1520-4. doi: 10.1126/science.1261172.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India. ; Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA. william.degrado@ucsf.edu gevorg.grigoryan@dartmouth.edu meihong@mit.edu michael.grabe@ucsf.edu. ; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. william.degrado@ucsf.edu gevorg.grigoryan@dartmouth.edu meihong@mit.edu michael.grabe@ucsf.edu. ; Department of Computer Science and Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA. william.degrado@ucsf.edu gevorg.grigoryan@dartmouth.edu meihong@mit.edu michael.grabe@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25525248" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/*chemistry ; Crystallography, X-Ray ; Ion Transport ; Lipid Bilayers ; Membrane Proteins/*chemistry ; Micelles ; Molecular Dynamics Simulation ; *Protein Engineering ; Protein Structure, Secondary ; Zinc/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-17
    Description: Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 x 10(6) pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, 〉99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split-green flourescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Alexander M -- Xuan, Yuanhu -- Xu, Meng -- Wang, Rui-Sheng -- Ho, Cheng-Hsun -- Lalonde, Sylvie -- You, Chang Hun -- Sardi, Maria I -- Parsa, Saman A -- Smith-Valle, Erika -- Su, Tianying -- Frazer, Keith A -- Pilot, Guillaume -- Pratelli, Rejane -- Grossmann, Guido -- Acharya, Biswa R -- Hu, Heng-Cheng -- Engineer, Cawas -- Villiers, Florent -- Ju, Chuanli -- Takeda, Kouji -- Su, Zhao -- Dong, Qunfeng -- Assmann, Sarah M -- Chen, Jin -- Kwak, June M -- Schroeder, Julian I -- Albert, Reka -- Rhee, Seung Y -- Frommer, Wolf B -- New York, N.Y. -- Science. 2014 May 16;344(6185):711-6. doi: 10.1126/science.1251358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. ; Department of Physics, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic University and State University, Blacksburg, VA 24061, USA. ; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. ; Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory and Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. Center for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. wfrommer@stanford.edu srhee@carnegiescience.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833385" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Membrane/*metabolism ; Membrane Proteins/genetics/*metabolism ; *Protein Interaction Maps ; Signal Transduction ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-06-10
    Print ISSN: 0305-4470
    Electronic ISSN: 1361-6447
    Topics: Mathematics , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 83 (1961), S. 2351-2354 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 38 (1973), S. 2164-2166 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 24 (1959), S. 151-155 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...