ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-11-01
    Print ISSN: 0012-8252
    Electronic ISSN: 1872-6828
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-28
    Print ISSN: 1593-5213
    Electronic ISSN: 2037-416X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-01
    Description: Air permeability is a major physical factor affecting the advective transport of a gas through the soil, and variations in this parameter can strongly influence the emission of endogenous gases from the soil to the atmosphere. In this paper, we illustrated a new and simple method for measuring in situ air permeability based on the measurement of air pressure inside a special probe inserted into the soil. The method was designed and developed primarily to study the relationship between air permeability and the soil CO2 flux in an active volcanic area. The method was used for continuous monitoring of the air permeability at two different locations on the island of Vulcano. At the same time, the values of the atmospheric pressure, temperature, rain, and volumetric water content of the soil were also acquired to investigate their effect on soil air permeability and soil CO2 flux. The results showed that during the monitoring period, soil air permeability exhibited minor variations at each site, while larger variations in the soil CO2 flux were recorded. The effect of soil air permeability on soil CO2 flux was negligible at both sites, whereas a strong dependence of soil CO2 flux on volumetric water content and on atmospheric pressure was found. Furthermore, the variation in air permeability recorded at both sites was much lower than that predicted using some well-known predictive models, showing that the relationship among different soil transport parameters is more complex in real field conditions than would be expected by semiempirical models. © 2017. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-09-09
    Description: The identification and characterization of seismogenic structures in southwestern Sicily is an open debate both for the geological-structural complexity of this sector and the scarce seismicity as well. In addition, clear morphological evidence of tectonic structures is limited. Besides the geophysical methods, the study of the spatial distribution of soil CO2 flux is a valid methodology to investigate the position and geometry of buried active faults. Indeed, active tectonic structures are channels with high permeability through which deep fluids can migrate toward the atmosphere. Therefore, the alignment of high degassing areas can reveal the presence of preferential ways of rising fluids (i.e. faults). We applied this methodology in SW Sicily in the surrounding of the area hit by the 1968 seismic sequence and in three other areas where evidence of active deformation has been recognized. Furthermore, to investigate the origin of emitted fluids, we measured the carbon isotopic composition of the soil CO2 in some high emission sites. The results showed high spatial variability of soil CO2 fluxes with values ranging from 1 to 430 g m−2d−1. The areal patterns of soil CO2 fluxes in all the areas reveal a strong influence of the main tectonic structures and active deformations on soil CO2 emissions. The range of isotopic data and the distribution of soil CO2 fluxes suggest a supply of deep fluids through the active tectonic structures.
    Description: Published
    Description: SE104
    Description: 2T. Deformazione crostale attiva
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Soil CO2 flux ; Diffusive degassing structures (DDS) ; Active tectonic structures ; Belice Valley ; 04. Solid Earth ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-06
    Description: The partitioning of carbon dioxide (CO〈sub〉2〈/sub〉) released by soils at Vulcano Island (Aeolian Islands, Italy) was performed by combining the CO〈sub〉2〈/sub〉 flux and the carbon isotope measurements. Based on this method, the amount of CO〈sub〉2〈/sub〉 of volcanic origin was quantified six times during the period 2015–2018. The data analysis allowed us to establish the correlation between CO〈sub〉2〈/sub〉 soil degassing and changes in the contribution of volcanic fluids. Carbon isotope determinations were performed in situ to enhance the coverage of data collection in space and time. These data were combined with both the CO〈sub〉2〈/sub〉 contents in the ground gases and the soil CO〈sub〉2〈/sub〉 flux. The amount of volcanic CO〈sub〉2〈/sub〉 was distinguished from that of biogenic origin by implementing a three-component mixing model. The results of this study indicate that the increase in CO〈sub〉2〈/sub〉 output in September 2018 reflects the increase in volcanic gas emissions. The measurement method and analysis presented in this work are sufficiently general to be applicable to the monitoring programs of active volcanoes.
    Description: Published
    Description: 106972
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Carbon dioxide ; CO2 flux ; CO2 isotope composition ; Volcano monitoring ; Volcanic unrest ; Volcanic degassing ; 04. Solid Earth ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: L'Istituto Nazionale di Geofisica e Vulcanologia (INGV) è componente del Servizio Nazionale di Protezione Civile, ex articolo 6 della legge 24 febbraio 1992 n. 225 ed è Centro di Competenza per i fenomeni sismici, vulcanici e i maremoti per il Dipartimento della Protezione Civile Nazionale (DPC). L’Osservatorio Vesuviano, Sezione di Napoli dell’INGV, ha nei suoi compiti il monitoraggio e la sorveglianza H24/7 delle aree vulcaniche attive campane (Vesuvio, Campi Flegrei e Ischia). Tali attività sono disciplinate dall’Accordo-Quadro (AQ) sottoscritto tra il DPC e l’INGV per il decennio 2012-2021 e sono dettagliate negli Allegati A e B del suddetto AQ. Il presente Rapporto sul Monitoraggio dei Vulcani Campani rappresenta l’attività svolta dall’Osservatorio Vesuviano e dalle altre Sezioni INGV impegnate nel monitoraggio dell’area vulcanica campana nel primo semestre 2019.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Unpublished
    Description: 4V. Processi pre-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Keywords: Campi Flegrei ; Vesuvio ; Ischia ; Volcano Monitoring ; 04.06. Seismology ; 04.03. Geodesy ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-14
    Description: The eruption of Mt. Etna which occurred on December 24th 2018 was characterized by strombolian activity and fire fountains, emitted by the New South-East Crater and along a fissure that propagated towards the SE. The influence of volcanic emissions on atmospheric deposition was clearly detectable at several kilometres from the source. Wet and dry (bulk) deposition samples were collected each month, through a network of eleven collectors, in the areas of Milazzo, and Priolo between June 2018 and June 2019. They were analysed for major ions and trace elements concentrations. The pH values range from 3.9 to 8.3, while the EC values range from 7 to 396 μS cm-1. An extensive neutralization of the acidity has been recognised mainly due to the suspended alkaline dust particles, which have a buffering role in rainwater. A high load of Na+ and Cl- was observed at all sites, related to the closeness of the study areas to the coast, showing a high positive correlation (R2 = 0.989) along the line of Na+/Cl- ratio in seawater. During the eruption, the volcanic plume was carried by the winds for long distance (more than 300 km) affecting the area of Priolo but not that of Milazzo, which was upwind with respect to Mt. Etna. The impact of volcanic HF was clearly recognised in the samples collected after the eruption. Volcanic SO2 and HCl had a lower impact due to the overwhelming input of anthropogenic sulfate and marine chloride. On the contrary, the signature of the Mt. Etna eruption can be well recognised in the high concentrations of certain trace elements in the samples collected immediately after the eruption. The strongest contrast between affected and non-affected samples was recognised in Al, Cd, and especially in the volatile elements Tl and Te, which are typically enriched in volcanic emissions. The results showed that volcanic eruptions might have a relevant effect on the atmospheric chemistry and on the composition of rainwater up to distances of 80 km from the emission vents.
    Description: Published
    Description: 341-358
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: rainwater ; fluoride ; trace elements ; volcanic emissions ; 01. Atmosphere ; 03. Hydrosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-21
    Description: Air permeability is a major physical factor affecting the advective transport of a gas through the soil, and variations in this parameter can strongly influence the emission of endogenous gases from the soil to the atmosphere. In this paper, we illustrated a new and simple method for measuring in situ air permeability based on the measurement of air pressure inside a special probe inserted into the soil. The method was designed and developed primarily to study the relationship between air permeability and the soil CO2 flux in an active volcanic area. The method was used for continuous monitoring of the air permeability at two different locations on the island of Vulcano. At the same time, the values of the atmospheric pressure, temperature, rain, and volumetric water content of the soil were also acquired to investigate their effect on soil air permeability and soil CO2 flux. The results showed that during the monitoring period, soil air permeability exhibited minor variations at each site, while larger variations in the soil CO2 flux were recorded. The effect of soil air permeability on soil CO2 flux was negligible at both sites, whereas a strong dependence of soil CO2 flux on volumetric water content and on atmospheric pressure was found. Furthermore, the variation in air permeability recorded at both sites was much lower than that predicted using some well-known predictive models, showing that the relationship among different soil transport parameters is more complex in real field conditions than would be expected by semiempirical models.
    Description: Published
    Description: 3241–3253
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: Soil CO2 flux ; air permeability ; VWC ; Vulcano ; Geochimica
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-13
    Description: This study focuses on the interaction among deep volcanic/hydrothermal gases, groundwater and soil gases at Vulcano Island (Aeolian Archipelago, Italy). The chemical-physical parameters of the groundwater, the total dissolved inorganic carbon (TDIC) and the isotopic composition of the CO2 dissolved in groundwater are reported and discussed. Furthermore, a comparison between soil gases and groundwater indicates that groundwater and soil gases show the same qualitative information, giving a good overall picture of the main degassing zones of a volcanic system, whereas the soil gas discharge provides an evaluation of the mass released by the deep feeding system. This approach can be a useful tool both to characterize mixing and/or interaction processes among different sources and for a monitoring of degassing activity of a volcanic system.
    Description: Published
    Description: 116-119
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Soil CO2 flux ; Dissolved gases ; Isotope composition of CO2 ; Groundwaters ; Vulcano Island ; 03.02. Hydrology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...