ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 66 (1994), S. 84-105 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 86 (1982), S. 463-467 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 88 (1984), S. 3238-3243 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 2168-2175 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A variation on molecular beam epitaxy (MBE), called van der Waals epitaxy, is described where a material with primarily two-dimensional (2D) bonding is grown on a substrate which also has a 2D structure. Lattice matching difficulties, which limit the choice of materials in MBE of 3D systems, are circumvented since the interlayer bonding is from weak van der Waals interactions. The title system shows a lattice mismatch of 10% yet high quality epitaxial films can be grown. The films were characterized in situ with reflection high energy electron diffraction, Auger electron spectroscopy, and low energy electron loss spectroscopy. Additional characterization after exposure to ambient by x-ray photoelectron spectroscopy, low energy electron diffraction, transmission electron microscopy confirmed the highly ordered nature of the films. Scanning tunneling microscopy provided real space images of the morphology of the epitaxial layer and showed unusual structures attributed to lattice mismatch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 3010-3014 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: X-ray photoemission, ultraviolet photoemission spectroscopy (UPS), and scanning tunneling microscopy (STM) have been used to determine the energy level alignment and the molecular ordering of monolayer and submonolayer pentacene films on Au(111) in ultrahigh vacuum. Pentacene evaporated onto the van der Waals surface of SnS2 was used as a noninteracting substrate for comparison. A large interface dipole was measured for pentacene on Au(111) (0.95 eV) whereas pentacene on SnS2 showed a relatively small interface dipole (0.26 eV). The different interface dipoles are related to the different orientations of the pentacene molecules due to different pentacene substrate interaction energies. Differences in the UPS spectra also support changing molecular orientations of the two substrates. STM images of pentacene on Au(111) revealed that the molecules lay flat on the substrate and are oriented parallel to each other, forming striped structures that are commensurate with the Au(111) lattice. The pentacene coverage influences the packing of the striped structures that can form a variety of unit cells. Three related unit cells with pentacene molecules tilted [(2×2(square root of)7), (2×(square root of)31), and (2×(square root of)39)] or perpendicular (2×3(square root of)3) to the row direction were identified on Au(111). © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 1499-1509 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Perylene tetracarboxylic dianhydride (PTCDA) thin films were grown in several steps on tin disulfide (SnS2) single crystals and characterized by combined x-ray and ultraviolet photoemission spectroscopy (XPS), (UPS) in order to characterize the frontier orbital line-up and the interface dipole at their interface. Due to the large difference between the work functions of PTCDA (4.26 eV) and SnS2 (5.09 eV) this experiment represents a model system for the investigation of band bending related phenomena in organic semiconductor heterojunctions. Our results show that the equilibration between the Fermi levels of both materials in contact is achieved almost solely by band bending (bulk charge redistribution) in the PTCDA layer. No significant interface dipole was detected which means that the PTCDA molecular orbitals and the SnS2 bands align at the vacuum level corresponding to the electron affinity rule. Our experiments clearly demonstrate the importance of an additional XPS measurement which (in most cases) allow the measurement of band bending with much higher accuracy than could be achieved in experiments carried out by UPS alone. These experiments also show that, due to the different depth sensitivity of high binding energy cutoff (secondary edge) and XPS core levels (or UPS valence bands), it is very important to grow relatively thick overlayers in order to measure orbital alignment and interface dipole correctly. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 58 (1991), S. 472-474 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Epilayers of transition metal dichalcogenides (TMDs) with two-dimensional structures can be grown with molecular beam epitaxy onto other TMDs substrates without regard to lattice matching. Although there is no strong bonding between the epilayer and the substrate, the van der Waals interaction between the two hexagonally closest packed lattices results in a periodic distortion which, due to electronic effects, is prominently imaged with the scanning tunneling microscope.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 1421-1423 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Tapping-mode atomic force microscopy was used to spatially resolve areas of different doping types on Si wafers patterned by photolithography and subsequent ion implantation. Application of a direct current dc bias between cantilever and sample during measurement induced a change in the tapping-mode phase contrast depending on the dopant type of the scanned sample area. This allowed the direct identification of areas of different doping types. Additional measurements on Au samples demonstrate a direct correlation between bias-induced Coulomb force and resulting phase change allowing the conclusion that the observed phase contrast results from dc bias-induced band bending changes. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 6729-6736 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin lithium fluoride (LiF) interlayers between the low work function electrode and the electron transport layer in organic light emitting diodes (OLED) result in improved device performance. We investigated the electronic structure of LiF coated Al and Pt electrodes by x-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS). Thin LiF films were grown in several steps onto Ar+ sputtered Al and Pt foils. After each growth step the surfaces were characterized in situ by XPS and UPS measurements. After evaluating band bending, work function and valence band offset for both samples, their band lineups were determined. Our measurements indicate that despite the insulating character of LiF in both samples, band bending is present in the LiF layer. The difference in band bending between the samples allows the conclusion that the driving force for the development of the band bending results from the contact potential between the metal and the LiF overlayer. The band bending is most likely caused by a redistribution of charged Frenkel or Schottky type defects within the LiF layer. The work function of both samples after LiF deposition was dramatically lowered compared to the values obtained on the clean sputtered metal surfaces. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 1026-1028 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The alignment of the highest occupied molecular orbitals (HOMO) at the tris (8-hydroxy quinoline) aluminum (Alq3)/N,N′-di-(3-methylphenyl)-N,N′diphenyl-4,4′-diaminobiphenyl (TPD) heterojunction, used in organic light-emitting diodes (OLED), was determined by growing a TPD layer in several steps on a thick Alq3 substrate layer. After each growth step the sample was characterized in situ by x-ray and ultraviolet photoemission spectroscopy. The offset of the HOMO maxima at the interface was determined to be −0.13 eV from Alq3 to TPD. By including the known HOMO–lowest occupied molecular orbital (LUMO) gaps for both molecules into the evaluation, the offset of the LUMO minima was determined to be −0.33 eV from Alq3 to TPD. These values are consistent with previous assumptions that this interface represents a higher barrier for electron injection from Alq3 to TPD than for hole injection from TPD to Alq3. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...