ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Agriculture. ; Water. ; Hydrology. ; Food security. ; Climatology. ; Soil science. ; Sustainability. ; Agriculture. ; Water. ; Food Security. ; Climate Sciences. ; Soil Science. ; Sustainability.
    Description / Table of Contents: Introduction -- Water-smart practices to manage water scarcity -- Soil-smart practices: Integrated soil fertility management -- Fish farms effluents for irrigation and fertilizer: A field and modeling studies -- Integration between crop-smart, water-smart and soil-smart practices -- Climate extremes and crops -- Climate-resilient crops -- Assessment of climate variability and wheat productivity in Egypt -- Practices contribute in reduction of greenhouse gases.
    Abstract: This book tackles the main feature of water-smart, soil-smart and crop-smart practices and their integration to sustainably enhance food production. The book includes some insights on the implications of using climate-smart practices in irrigated and rain-fed agriculture, and suggests approaches to eradicate the negative effects of water scarcity, climate variability and climate change. The book reviews the most important crops resilient to climate variability and their resistance to other biotic and abiotic stresses, and contains the existing practices in Egypt that achieved the three pillars of climate-smart agriculture.
    Type of Medium: Online Resource
    Pages: XXII, 185 p. 31 illus., 25 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783030931117
    DDC: 630
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Pollution. ; Water. ; Hydrology. ; Agriculture. ; Climatology. ; Botany. ; Pollution. ; Water. ; Agriculture. ; Climate Sciences. ; Plant Science.
    Description / Table of Contents: Chapter 1: Water scarcity leads to food insecurity -- Chapter 2: Deficit irrigation and water conservation -- Chapter 3: Egypt faces water deficiency, and food insufficiency -- Chapter 4: Field crops and deficit irrigation in Egypt -- Chapter 5: Vegetable crops and deficit irrigation in Egypt -- Chapter 6: Wheat insufficiency and deficit irrigation -- Chapter 7: Climate change assessment in Egypt: A review -- Chapter 8: Climate change and wheat self-sufficiency.
    Abstract: This book focuses on proving that deficit irrigation could play an important role in increasing food production in times of water scarcity. Although the application of deficit irrigation can involve loss in crop productivity, it still secures water to be use in cultivating more lands and producing more food. The following questions are discussed and the authors offer solutions to these problems: Will the production, on a national level, resulting from these new added areas compensate yield losses attained by application of deficit irrigation? Is it possible to use deficit irrigation practice to reduce the applied irrigation water to certain crops that have a surplus in their production, and direct this saved water to cultivate new areas with crops have low self-sufficiency ratios? Under climate change in 2030, would deficit irrigation practice have the same role it plays under the current conditions? This book will appeal to students and researchers involved with water scarcity and food security.
    Type of Medium: Online Resource
    Pages: XIV, 196 p. 24 illus., 20 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030355869
    DDC: 363.73
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-01
    Description: The objective of this paper was to develop agro-climatic zones in the old cultivated lands of Egypt in the Nile Delta and Valley using climate normals from 1985–2014 to facilitate better irrigation water management under water scarcity conditions. 30-year monthly climate data were collected for 17 agricultural governorates in Egypt and yearly averages and 30-year averages were calculated. BISm model was used to calculate yearly averages of potential evapotranspiration (PET) and 30-year average for each governorate. Analysis of variance was done using one factor randomize complete block design, with number of years as replicates. Furthermore, the mean, the range and R2 were calculated to test the strength of the relationship between PET and climate elements. The means of PET for each governorate was separated and ranked in ascending order using least significant difference test (LSD0.05). The results identified 7 agro-climatic zones (LSD0.05 = 0.146). These zones were: (1) Alexandria; (2) Demiatte, Kafr El-Sheikh and Dakhlia; (3) El-Behira, and El-Gharbia; (4) El-Minofia, El-Sharkia, El-Kalubia, Giza and El-Fayom; (5) Beni Sweif, El-Minia, Assuit and Sohag; (6) Qena; and (7) Aswan. Such zoning will increase the ability of the Egyptian policy makers to prepare the appropriate water management and development policies as a result of the availability of proper information on each zone aiming at efficient use of the limited water resources.
    Print ISSN: 1429-7426
    Electronic ISSN: 2083-4535
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-01
    Description: CropSyst (Cropping Systems Simulation) is used as an analytic tool for studying irrigation water management to increase wheat productivity. Therefore, two field experiments were conducted to 1) calibrate CropSyst model for wheat grown under sprinkler and drip irrigation systems, 2) to use the simulation results to analyse the relationship between applied irrigation amount and the resulted yield and 3) to simulate the effect of saving irrigation water on wheat yield. Drip irrigation system in three treatments (100%, 75% and 50% of crop evapotranspiration – ETc) and under sprinkler irrigation system in five treatments (100%, 80%, 60%, 40%, and 20% of ETc) were imposed on these experiments. Results using CropSyst calibration revealed-that results of using CropSyst calibration revealed that the model was able to predict wheat grain and biological yield, with high degree of accuracy. Using 100% ETc under drip system resulted in very low water stress index (WSI = 0.008), whereas using 100% ETc sprinkler system resulted in WSI = 0.1, which proved that application of 100% ETc enough to ensure high yield. The rest of deficit irrigation treatments resulted in high yield losses. Simulation of application of 90% ETc not only reduced yield losses to either irrigation system, but also increased land and water productivity. Thus, it can be recommended to apply irrigation water to wheat equal to 90% ETc to save on the applied water and increase water productivity.
    Print ISSN: 1429-7426
    Electronic ISSN: 2083-4535
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-01
    Description: The objective of this paper was to compare between agro-climatic zones developed from 10-year interval of weather data from 2005-2014, 20-year interval of weather data from 1995-2014 and the zoning developed by [NORELDIN et al. 2016] using 30-year interval from 1985-2014 in the old cultivated land of Egypt in the Nile Delta and Valley. Monthly means of weather data were calculated for each year, and then monthly values for 10-year and 20-years were calculated for each governorate. Basic Irrigation scheduling model (BISm) was used to calculate reference evapotranspiration (ETo). Analysis of variance was used and the means was separated and ranked using least significant difference test (LSD0.05). Our results showed that agro-climatic zoning using 20-year values of ETo was similar to the zones developed with 30-year values of ETo, with different values of average ETo in each zone. Furthermore, using 10-year values of ETo resulted in higher values of ETo in each zone, compared to 20-year and 30-year ETo values. However, the average value of ETo over the three classifications was close to each other. Thus, depending on the availability of weather data, either zoning can be sufficient to develop agro-climatic zones.
    Print ISSN: 1429-7426
    Electronic ISSN: 2083-4535
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-01
    Description: CropSyst model can be used as irrigation water management tool to increase wheat productivity with poor quality water. The objective of this study was to calibrate CropSyst model for wheat irrigated with fresh and agricultural drainage water. To do so, three field experiments were conducted during three successive seasons in Nubaria Agricultural Research Station, Egypt representing the newly reclaimed calcareous soils. In the first season the treatments were 100% crop evapotranspiration (ETc) of fresh water (FW) and 100%ETcof agricultural drainage water (DW), while in the second and the third seasons, the treatments were 100%ETcofFW, 100%ETcofDW, 120%ETcofDWand 130%ETcofDW. From these results one can concluded that deducting 5% of the applied water to all treatments reduced yield by 3, 5 and 7% in the first, second and third growing season, respectively as a result of heat stress existed in the 2ndand 3rdseasons during reproductive phase. Furthermore, deducting 5% of the applied water from all treatments in the vegetative phase only resulted in lower yield losses. Thus, using CropSyst model could guide us to when we could reduce the applied irrigation water to wheat to avoid high yield losses.
    Print ISSN: 1429-7426
    Electronic ISSN: 2083-4535
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-01-01
    Description: Measurement of the likely magnitude of the economic impact of climate change on African agriculture has been a challenge. Using data from a survey of more than 9,000 farmers across 11 African countries, a cross-sectional approach estimates how farm net revenues are affected by climate change compared with current mean temperature. Revenues fall with warming for dryland crops (temperature elasticity of −1.9) and livestock (−5.4), whereas revenues rise for irrigated crops (elasticity of 0.5), which are located in relatively cool parts of Africa and are buffered by irrigation from the effects of warming. At first, warming has little net aggregate effect as the gains for irrigated crops offset the losses for dryland crops and livestock. Warming, however, will likely reduce dryland farm income immedia-tely. The final effects will also depend on changes in precipitation, because revenues from all farm types increase with precipitation. Because irrigated farms are less sensitive to climate, where water is available, irrigation is a practical adaptation to climate change in Africa.
    Print ISSN: 0258-6770
    Electronic ISSN: 1564-698X
    Topics: Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...