ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-19
    Description: MicroRNAs are abundant in animal genomes and have been predicted to have important roles in a broad range of gene expression programmes. Despite this prominence, there is a dearth of functional knowledge regarding individual mammalian microRNAs. Using a loss-of-function allele in mice, we report here that the myeloid-specific microRNA-223 (miR-223) negatively regulates progenitor proliferation and granulocyte differentiation and activation. miR-223 (also called Mirn223) mutant mice have an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte progenitors. We show that Mef2c, a transcription factor that promotes myeloid progenitor proliferation, is a target of miR-223, and that genetic ablation of Mef2c suppresses progenitor expansion and corrects the neutrophilic phenotype in miR-223 null mice. In addition, granulocytes lacking miR-223 are hypermature, hypersensitive to activating stimuli and display increased fungicidal activity. As a consequence of this neutrophil hyperactivity, miR-223 mutant mice spontaneously develop inflammatory lung pathology and exhibit exaggerated tissue destruction after endotoxin challenge. Our data support a model in which miR-223 acts as a fine-tuner of granulocyte production and the inflammatory response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnnidis, Jonathan B -- Harris, Marian H -- Wheeler, Robert T -- Stehling-Sun, Sandra -- Lam, Michael H -- Kirak, Oktay -- Brummelkamp, Thijn R -- Fleming, Mark D -- Camargo, Fernando D -- England -- Nature. 2008 Feb 28;451(7182):1125-9. doi: 10.1038/nature06607. Epub 2008 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18278031" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Differentiation ; *Cell Proliferation ; Gene Deletion ; Granulocytes/*cytology/immunology/pathology/*physiology ; Inflammation/genetics/immunology/pathology ; Lung/pathology ; MEF2 Transcription Factors ; Mice ; Mice, Knockout ; MicroRNAs/*genetics/*metabolism ; Myogenic Regulatory Factors/genetics/metabolism ; Neutrophils/physiology ; Phenotype ; Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-25
    Description: The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates organismal growth in response to many environmental cues, including nutrients and growth factors. Cell-based studies showed that mTORC1 senses amino acids through the RagA-D family of GTPases (also known as RRAGA, B, C and D), but their importance in mammalian physiology is unknown. Here we generate knock-in mice that express a constitutively active form of RagA (RagA(GTP)) from its endogenous promoter. RagA(GTP/GTP) mice develop normally, but fail to survive postnatal day 1. When delivered by Caesarean section, fasted RagA(GTP/GTP) neonates die almost twice as rapidly as wild-type littermates. Within an hour of birth, wild-type neonates strongly inhibit mTORC1, which coincides with profound hypoglycaemia and a decrease in plasma amino-acid concentrations. In contrast, mTORC1 inhibition does not occur in RagA(GTP/GTP) neonates, despite identical reductions in blood nutrient amounts. With prolonged fasting, wild-type neonates recover their plasma glucose concentrations, but RagA(GTP/GTP) mice remain hypoglycaemic until death, despite using glycogen at a faster rate. The glucose homeostasis defect correlates with the inability of fasted RagA(GTP/GTP) neonates to trigger autophagy and produce amino acids for de novo glucose production. Because profound hypoglycaemia does not inhibit mTORC1 in RagA(GTP/GTP) neonates, we considered the possibility that the Rag pathway signals glucose as well as amino-acid sufficiency to mTORC1. Indeed, mTORC1 is resistant to glucose deprivation in RagA(GTP/GTP) fibroblasts, and glucose, like amino acids, controls its recruitment to the lysosomal surface, the site of mTORC1 activation. Thus, the Rag GTPases signal glucose and amino-acid concentrations to mTORC1, and have an unexpectedly key role in neonates in autophagy induction and thus nutrient homeostasis and viability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000705/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000705/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Efeyan, Alejo -- Zoncu, Roberto -- Chang, Steven -- Gumper, Iwona -- Snitkin, Harriet -- Wolfson, Rachel L -- Kirak, Oktay -- Sabatini, David D -- Sabatini, David M -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 31;493(7434):679-83. doi: 10.1038/nature11745. Epub 2012 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23263183" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; Animals, Newborn/metabolism/*physiology ; Autophagy/*genetics ; Blood Glucose/metabolism ; GTP Phosphohydrolases/genetics/*metabolism ; *Gene Expression Regulation, Enzymologic ; Gene Knock-In Techniques ; Hypoglycemia/genetics ; Kaplan-Meier Estimate ; Mice ; Multiprotein Complexes/*genetics/*metabolism ; TOR Serine-Threonine Kinases/*genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-10
    Description: Mice that are transgenic for rearranged antigen-specific T cell receptors (TCRs) are essential tools to study T cell development and function. Such TCRs are usually isolated from the relevant T cells after long-term culture, often after repeated antigen stimulation, which unavoidably skews the T cell population used. Random genomic integration of the TCR alpha and beta chain and expression from nonendogenous promoters represent additional drawbacks of transgenics. Using epigenetic reprogramming via somatic cell nuclear transfer, we demonstrated that T cells with predefined specificities against Toxoplasma gondii can be used to generate mouse models that express the TCR from their endogenous loci, without experimentally introduced genetic modification. The relative ease and speed with which such transnuclear models can be obtained holds promise for the construction of other disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940321/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940321/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirak, Oktay -- Frickel, Eva-Maria -- Grotenbreg, Gijsbert M -- Suh, Heikyung -- Jaenisch, Rudolf -- Ploegh, Hidde L -- R01 GM062502/GM/NIGMS NIH HHS/ -- R01 GM062502-08/GM/NIGMS NIH HHS/ -- R01-HD045022/HD/NICHD NIH HHS/ -- R37 AI033456/AI/NIAID NIH HHS/ -- R37 AI033456-17/AI/NIAID NIH HHS/ -- R37-CA084198/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):243-8. doi: 10.1126/science.1178590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. kirak@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378817" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Protozoan/*immunology ; CD8-Positive T-Lymphocytes/immunology ; Embryonic Stem Cells ; Epitopes, T-Lymphocyte ; Female ; Genes, T-Cell Receptor alpha ; Genes, T-Cell Receptor beta ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; *Mice, Transgenic ; Molecular Sequence Data ; *Nuclear Transfer Techniques ; Protozoan Proteins/genetics/immunology ; Receptors, Antigen, T-Cell, alpha-beta/genetics/*immunology ; Toxoplasma/*immunology ; Toxoplasmosis, Animal/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2011-08-24
    Description: Mir-290 through mir-295 (mir-290–295) is a mammalian-specific microRNA (miRNA) cluster that, in mice, is expressed specifically in early embryos and embryonic germ cells. Here, we show that mir-290–295 plays important roles in embryonic development as indicated by the partially penetrant lethality of mutant embryos. In addition, we show that in surviving mir-290–295-deficient embryos, female but not male fertility is compromised. This impairment in fertility arises from a defect in migrating primordial germ cells and occurs equally in male and female mutant animals. Male mir-290–295−/− mice, due to the extended proliferative lifespan of their germ cells, are able to recover from this initial germ cell loss and are fertile. Female mir-290–295−/− mice are unable to recover and are sterile, due to premature ovarian failure.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-20
    Description: To study the development and function of “natural-arising” T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3+ CD4+ Treg cells developed in the thymus in the absence of...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...