ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: To elucidate the mechanism of podzolization in its first stages we studied the fate of the water-soluble organic matter (WSOM) in incipient podzols in sandy soils by comparing the composition of the WSOM from L, F and H horizons with that in the bulk of the Bh horizons and fibres of three profiles. The WSOM appeared to consist significantly of ligno-cellulose and proteins, but these biopolymers were hardly present in the Bh horizons. The material of the fibres, however, greatly resembled the WSOM composition, thereby suggesting that in these soils most of the WSOM is transported through the B horizon and accumulates hardly changed in thin bands where the water stops moving. This implies that in the early steps of podzolization, accumulation of organic matter in the B horizon is not likely to be caused by water-soluble material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 49 (1998), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Podzols tend to form on drift sands in The Netherlands given sufficient time. Differences in organic matter (OM) composition relate to vegetation succession on drift sand that evolves eventually into a micropodzol. We examined the relation between the water-soluble organic matter (WSOM) and the total OM composition in the Ah horizons of the first vegetation stages, under grass (Corynephorus canescens), moss (Polytrichum piliferum), heather (Calluna vulgaris) and pine (Pinus sylvestris), as determined by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and analysis of polysaccharides after acid hydrolysis. Polysacharides dominate the OM in the Ah horizons under grass and moss. Lignin and aliphatic compounds are minor compounds in these profiles, but are more important under heather and pine. The Py-GC traces of the WSOM under grass and moss contain abundant products derived from polysaccharides. The water-soluble fraction is enriched in phenolic and aliphatic compounds in comparison with their contents in pyrolysates of the total OM. In the WSOM fractions under heather and pine, phenols dominate the pyrolysates, whereas lignin-derived methoxyphenols are rare. Remarkably large amounts of alkenes and alkanes are present in the pyrolysates of these water-soluble fractions, most probably derived from aliphatic biopolymers. Their presence in water might be explained through the formation of colloids, which are stabilized by micelle-like arrangements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Interactions with dissolved organic matter (DOM) are generally believed to play a crucial role in the translocation of Al and Fe in acid sandy soils. Binding of Al and Fe to DOM affects their mobility in soils by altering sorption equilibria of charged sites on solid soil material, inducing precipitation of organo-metallic complexes and preventing the formation of inorganic Al and Fe phases. The relative importance of the different processes, especially with respect to the translocation of Al, Fe and organic matter in podzols, remains unresolved. We determined the effect of the presence of solid soil material from the eluvial (AhE and AE, respectively) horizons of a Fimic Anthrosol and a Haplic Podzol on the metal-to-organic carbon (M/C) ratio in solution and the formation of dissolved organic Al and Fe complexes. Furthermore, we assessed the resulting influence on the mobilization of Al, Fe and DOM. Even under considerable metal loading, the M/C ratios and ‘free’ metal fractions in solution remained low and relatively constant, due to an apparent buffering by the solid phase and the formation of organo-metal complexes in solution. The M/C ratios remained so low that significant precipitation of organo-metal complexes due to saturation with metals was not found. The apparent buffering by the solid phase can be explained by a strong release of organic matter from solid soil material and adsorption of non-complexed Al and Fe on solid organic matter upon metal addition. Adsorption of organo-metal complexes most likely played only a minor role. The observations confirm the expected mobilization of Al, Fe and DOM in eluvial horizons and seem to indicate that even under fluctuating input of Al, Fe and DOM the soil solution will have a constant composition with respect to M/C ratios and percentage of Al and Fe present in dissolved organo-metal complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 56 (2005), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The processes governing the (im)mobilization of Al, Fe and dissolved organic matter (DOM) in podzols are still subject to debate. In this study we investigated the mechanisms of (im)mobilization of Al, Fe and organic matter in the upper and lower B horizons of two podzols from the Netherlands that are in different stages of development. We equilibrated batches of soil material from each horizon with DOM solutions obtained from the Oh horizon of the corresponding soil profiles. We determined the amount of (im)mobilized Al, Fe and DOM after addition of Al and Fe at pH 4.0 and 4.5 and initial dissolved organic carbon (DOC) concentrations of 10 mg C litre−1 or 30 mg C litre−1, respectively. At the combination of pH and DOC concentrations most realistic for the field situation, organic matter was retained in all horizons, the most being retained in the lower B horizon of the well-developed soil and the least in the upper B horizon of the younger profile. Organic matter solubility seemed to be controlled mainly by precipitation as organo-metal complexes and/or by adsorption on freshly precipitated solid Al- and Fe-phases. In the lower B horizons, at pH 4.5, solubility of Al and Fe appeared to be controlled mainly by the equilibrium with secondary solid Al- and Fe-phases. In the upper B horizons, the solubility of Al was controlled by adsorption processes, while Fe still precipitated as inorganic complexes as well as organic complexes in spite of the prevailing more acidic pH. Combined with a previous study of eluvial horizons from the same profiles, the results confirm the important role of organic matter in the transport of Al and Fe to create illuvial B horizons initially and subsequently deepening and differentiating them into Bh and Bs horizons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-09-01
    Print ISSN: 0047-2425
    Electronic ISSN: 1537-2537
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-01
    Description: This article presents a set of Late Pleistocene marine mollusk radiocarbon (AMS) age estimates of 30–5014C kyr BP, whereas a MIS5 age (〉75 ka) is indicated by quartz and feldspar OSL dating, biostratigraphy, U-Th dating, and age-depth relationships with sea level. These results indicate that the14C dates represent minimum ages. The age discrepancy suggests that the shells are contaminated by younger carbon following shell death. The enigmatic14C dates cannot be “solved” by removing part of the shell by stepwise dissolution. SEM analysis of the Late Pleistocene shells within a context of geologically younger (recent/modern, Holocene) and older (Pliocene) shells shows the presence of considerable amounts of an intracrystalline secondary carbonate precipitate. The presence of this precipitate is not visible using XRD since it is of the same (aragonitic) polymorph as the original shell carbonate. The combination of nanospherulitic-shaped carbonate crystals, typical cavities, and the presence of fatty acids leads to the conclusion that the secondary carbonate, and hence the addition of younger carbon, has a bacterial origin. As shell material was studied, this study recommends an assessment of possible bacterial imprints in other materials like bone collagen as well.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-24
    Description: It is widely accepted that soil water repellency (SWR) is mainly caused by plant-derived hydrophobic organic compounds in soils; such hydrophobic compounds are defined as SWR-markers. However, the detailed influence of SWR-markers on SWR is yet unclear and the knowledge of their original sources is still limited. The aims of this study are to select important SWR-markers to predict SWR based on their correlation with SWR and to determine their origin. In our study, sandy soils with different SWR were collected, along with their covering vegetation, i.e. plant leaves/needles and roots. A sequential extraction procedure was applied to the soils to obtain three organic fractions: DCM / MeOH soluble fraction (D), DCM / MeOH insoluble fraction of IPA / NH3 extract (AI) and DCM / MeOH soluble fraction of IPA / NH3 extract (AS), which were subdivided into ten dominant SWR-marker groups: (D) fatty acid, (D) alcohol, (D) alkane, (AI) fatty acid, (AI) alcohol, (AI) ω-hydroxy fatty acid, (AI) α, ω-dicarboxylic acid, (AS) fatty acid, (AS) alcohol and (AS) ω-hydroxy fatty acid. Waxes and biopolyesters of the vegetation were also sequentially extracted from plants. In short, the soils with higher SWR have significantly higher relative concentrations of (AS) alcohols. A number of indications suggest that (AS) alcohols are mainly derived from roots and most likely produced by microbial hydrolysis of biopolyesters/suberins. In addition, the strong correlation between the biomarkers of plant tissues and SWR-markers in soils suggests that it is more accurate to predict SWR of topsoils using ester-bound alcohols from roots, and to predict SWR of subsoils using root-derived ω-hydroxy fatty acids and α, ω-dicarboxylic acids. Our analysis indicates that plant roots have a primary role influencing SWR relative to plant leaves.
    Electronic ISSN: 2199-3998
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-09
    Description: It is widely accepted that soil water repellency (SWR) is mainly caused by plant-derived hydrophobic organic compounds in soils; such hydrophobic compounds are defined as SWR markers. However, the detailed influence of SWR markers on SWR is yet unclear and the knowledge of their original sources is still limited. The aims of this study are to select important SWR markers to predict SWR based on their correlation with SWR and to determine their origin. In our study, sandy soils with different SWR were collected, along with their covering vegetation, i.e. plant leaves/needles and roots. A sequential extraction procedure was applied to the soils to obtain three organic fractions: dichloromethane (DCM)/MeOH soluble fraction (D), DCM/MeOH insoluble fraction of isopropanol/ammonia solution (IPA/NH3) extract (AI) and DCM/MeOH soluble fraction of IPA/NH3 extract (AS), which were subdivided into 10 dominant SWR marker groups: D fatty acid, D alcohol, D alkane, AI fatty acid, AI alcohol, AI ω-hydroxy fatty acid, AI α,ω-dicarboxylic acid, AS fatty acid, AS alcohol and AS ω-hydroxy fatty acid. Waxes and biopolyesters of the vegetation were also sequentially extracted from plants. The soils with higher SWR have significantly higher relative concentrations of AS alcohols. A number of indications suggest that AS alcohols are mainly derived from roots and most likely produced by microbial hydrolysis of biopolyesters (mainly suberins). In addition, the strong correlation between the biomarkers of plant tissues and SWR markers in soils suggests that it is more accurate to predict SWR of topsoils using ester-bound alcohols from roots, and to predict SWR of subsoils using root-derived ω-hydroxy fatty acids and α,ω-dicarboxylic acids. Considering the sandy soils studied here, the relationships we obtained need to be tested for other types of soils. Our analysis indicates that plant roots have a primary role influencing SWR relative to plant leaves.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-24
    Description: Burial of organic matter (OM) plays an important role in marine sediments, linking the short-term, biological carbon cycle with the long-term, geological subsurface cycle. It is well established that low-oxygen conditions promote organic carbon burial in marine sediments. However, the mechanism remains enigmatic. Here we report biochemical quality, microbial degradability, OM preservation and accumulation along an oxygen gradient in the Indian Ocean. Our results show that more OM, and of biochemically higher quality, accumulates under low oxygen conditions. Nevertheless, microbial degradability does not correlate with the biochemical quality of OM. This decoupling of OM biochemical quality and microbial degradability, or bioavailability, violates the ruling paradigm that higher quality implies higher microbial processing. The inhibition of bacterial OM remineralisation may play an important role in the burial of organic matter in marine sediments and formation of oil source rocks.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...