ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Description / Table of Contents: The widespread extension occured within the Variscan orogen and its northern foreland during late Carboniferous to Early Permian times. This was associated with magnetism and with a fundamental change, at the Westphalian-Stephanian boundary, in the regional stress field, coincident with the termination of orogenic activity and onset of dextral translation between North Africa and Europe. Rifting propagated across basement terranes with different ages and thermal histories. Most of the roft basins developed on relatively thin lithosphere; however, the highly magnetic Oslo graben initiated within the edge of a craton. Early stephanian regional uplift is contemporaneous with the onset of magmatism; inviting speculation that it might have been induced by a thermal anomaly within the upper mantle. The contributions to this volume suggest that the geodynamic setting in which magmatism occurred was complex, involving wrench tectonics, slab detachment, and delimination or thermal erosion of the base of the lithosphere.
    Pages: Online-Ressource (VII, 498 Seiten)
    ISBN: 1862391521
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 9/M 04.0385
    In: Geological Society special publication
    Type of Medium: Monograph available for loan
    Pages: viii, 498 S.
    ISBN: 1862391521
    Series Statement: Geological Society special publication 223
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 125 (1996), S. 113-139 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from 〉0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to 〉7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 85 (1984), S. 209-223 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Major element compositions of submarine basalts, quenched glasses, and contained phenocrysts are reported for samples from 25 dredge stations along the Mohns-Knipovich Ridge between the Jan Mayen fracture zone and 77°30′N. Most of the basalts collected on the Jan Mayen platform have a subaerial appearance, are nepheline normative, rich in incompatible elements, and have REE-patterns strongly enriched in light-REE. The other basalts (with one exception) are tholeiitic pillow basalts, many of which have fresh quenched glass rims. From the Jan Mayen platform northeastwards the phenocryst assemblage changes from olivine±plagioclase±clinopyroxene±magnetite to olivine +plagioclase±chrome-spinel. This change is accompanied by a progressive decrease in the content of incompatible elements, light-REE enrichments and elevation of the ridge that are similar to those observed south of the Azores and Iceland hotspots. Pillow basalts and glasses collected along the esternmost part of the Mohns Ridge (450 to 675 km east of Jan Mayen) have low K2O, TiO2, and P2O5 contents, light-REE depleted patterns relative to chondrites, and Mg/(Mg+Fe2+) ratios between 0.64 and 0.60. Pillow basalts and glasses from the Knipovich Ridge have similar (Mg/Mg+Fe2+) ratios, but along the entire ridge have slightly higher concentrations of incompatible elements and chondritic to slightly light-REE enriched patterns. The incompatible element enrichment increases slightly northward. Plagioclase phenocrysts show normal and reverse zoning on all parts of the ridge whereas olivines are unzoned or show only weak normal zoning. Olivine-liquid equilibrium temperatures are calculated to be in the range of 1,060–1,206° C with a mean around 1,180° C. Rocks and glasses collected on the Jan Mayen Platform are compositionally similar to Jan Mayen volcanic products, suggesting that off-ridge alkali volcanism on the Jan Mayen Platform is more widespread than so far suspected. There is also evidence to suggest that the alkali basalts from the Jan Mayen Platform are derived from deeper levels and by smaller degrees of partial melting of a mantle significantly more enriched in light-REE and other incompatible elements than are the tholeiitic basalts from the Eastern Mohns and Knipovich Ridge. The possibility of the presence of another hitherto unsuspected enriched mantle region north of 77° 30′ N is also briefly considered. It remains uncertain whether geochemical gradients revealed in this study reflect: (1) the dynamics of mixing during mantle advection and magma emplacement into the crust along the Mid-Atlantic Ridge (MAR) spreading axis, (e.g. such as in the mantle plume — large-ion-lithophile element depleted asthenosphere mixing model previously proposed); or (2) a horizontal gradation of the mantle beneath the MAR axis similar to that observed in the overlying crust; or (3) a vertical gradation of the mantle in incompatible elements with their contents increasing with depth and derivations of melts from progressively greater depth towards the Jan Mayen Platform.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Fluid and solid inclusions have been studied in selected samples from a series of spinel-bearing Crdiopside-and Al-augite-series ultramafic (harzburgites, lherzolites, and olivine-clinopyroxene-rich rocks), and gabbroic xenoliths from Hierro, Canary Islands. In these samples several generations of fluid inclusions and ultramafic-and mafic-glass inclusions may be texturally related to different stages of crystal growth. The fluid inclusions consist of pure, or almost pure, CO2. The solid inclusions in the ultramafic xenoliths comprise early inclusions of devitrified ultramafic glass, sulphide inclusions, as well as polyphase inclusions (spinel+clinopyroxene±glass±other silicates) believed to have formed from trapped basaltic melts. Vitreous basaltic glass±CO2±sulphide±silicates are common as secondary inclusions in the ultramafic xenoliths, and as primary inclusions in the gabbroic xenoliths. Microthermometry gives minimum trapping temperatures of 1110° C for the early ultramafic-and mafic-glass inclusions, and a maximum of 1260–1280° C for late inclusions of host basaltic glass. In most samples the CO2 inclusions show a wide range in homogenization temperatures (-40 to +31° C) as a result of decrepitation during ascent. The lowest homogenization temperatures of about-40° C, recorded in some of the smallest CO2 inclusions, indicate a minimum depth of origin of 35 km (12 kbar) for both the Cr-diopside-and Al-augite-series xenoliths. The gabbroic xenoliths originate from a former magma chamber at a depth of 6–12 km.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 106 (1991), S. 236-252 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Three groups of ultramafix xenoliths were collected from alkali basalt in the island of Hierro, Canary Islands: (1) Cr-diopside series (spinel harzbugite, lherzolite, dunite); (2) Al-augite series xenoliths (spinel wherlite, olivine clinopyroxenite, dunite, olivine websterite); (3) gabbroic xenoliths. The main textures are granoblastic, porphyroclastic and granular, but poikilitic textures, and symplectitic intergrowths of clinopyroxene (cpx) + spinel (sp)±orthopyroxene (opx)±olivine (ol) (in rare cases cpx+opx), occur locally. Textural relations and large inter- and intra-sample mineral chemical variations testify to a complex history of evolution of the mantle source region, involving repeated heating, partial melting, and enrichment associated with infiltration by basaltic melts. The oldest assemblage in the ultramafic xenoliths (porphyroclasts of ol+opx±sp±cpx) represents depleted abyssal mantle formed within the stability field of spinel lherzolite. The neoblast assemblage [ol+cpx+ sp±opx±plagioclase (plag)±ilmenite (il)±phlogopite (phlog)] reflect enrichment in CaO+Al2O3+Na2O+ FeO±TiO2±K2O±H2O through crystal/liquid separation processes and metasomatism. The Al-augite-series xenoliths represent parts of the mantle where magma infiltration was much more extensive than in the source region of the Cr-diopside series rocks. Geothermometry indicates temperature fluctuations between about 900–1000 and ≥1200°C. Between each heating event the mantle appears to have readjusted to regional ‘geothermal gradient’ passing 950°C at about 12 kbar. The gabbroic xenoliths represent low-pressure cumulates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-10-08
    Description: During the Late Carboniferous and Early Permian an extensive magmatic province developed within northern Europe, intimately associated with extensional tectonics, in an area stretching from southern Scandinavia, through the North Sea, into northern Germany. Within this area magmatism was unevenly distributed, concentrated mainly in the Oslo Graben and its offshore continuation in the Skagerrak, Scania in southern Sweden, the island of Bornholm, the North Sea and northern Germany. Available geochemical (major- and trace-element, and Sr-Nd isotope, data) and geophysical data are reviewed to provide a basis for understanding the geodynamic setting of the magmatism in these areas. Peak magmatic activity was concentrated in a narrow time-span from c. 300 to 280 Ma. The magmatic provinces developed within a collage of basement terranes of different ages and lithospheric characteristics (including thicknesses), brought together during the preceding Variscan orogeny. This suggests that the magmatism in this area may represent the local expression of a common tectono-magmatic event with a common causal mechanism. Available geochemical (major and trace element and Sr-Nd isotope data) and geophysical data are reviewed to provide a basis for understanding the geodynamic setting of the magmatism in these areas. The magmatism covers a wide range in rock types both on a regional and a local scale (from highly alkaline to tholeiitic basalts, to trachytes and rhyolites). The most intensive magmatism took place in the Oslo Graben (ca. 120 000 km3) and in the NE German Basin (ca. 48 000 km3). In both these areas a large proportion of the magmatic rocks are highly evolved (trachytes-rhyolites). The dominant mantle source component for the mildly alkali basalts to subalkaline magmatism in the Oslo Graben and Scania (probably also Bornholm and the North Sea) is geochemically similar to the Prevalent Mantle (PREMA) component. Rifting and magmatism in the area is likely to be due to local decompression and thinning of highly asymmetric lithosphere in responses to regional stretching north of the Variscan Front, implying that the PREMA source is located in the lithospheric mantle. However, as PREMA sources are widely accepted to be plume-related, the possibility of a plume located beneath the area cannot be disregarded. Locally, there is also evidence of other sources. The oldest, highly alkaline basaltic lavas in the southernmost part of the Oslo Graben show HIMU trace element affinity, and initial Sr-Nd isotopic compositions different from that of the PREMA-type magmatism. These magmas are interpreted as the results of partial melting of enriched, metasomatised domains within the mantle lithosphere beneath the southern Olso Graben; this source enrichment can be linked to migration of carbonatite magmas in the earliest Paleozoic (ca. 580 Ma). Within northern Germany, mantle lithosphere modified by subduction-related fluids from Variscan subduction systems have provided an important magma source components.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1969-07-01
    Print ISSN: 0022-1376
    Electronic ISSN: 1537-5269
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2019-09-01
    Print ISSN: 0024-4937
    Electronic ISSN: 1872-6143
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...