ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-09-05
    Description: Arrest of the cell cycle at the G2 checkpoint, induced by DNA damage, requires inhibitory phosphorylation of the kinase Cdc2 in both fission yeast and human cells. The kinase Wee1 and the phosphatase Cdc25, which regulate Cdc2 phosphorylation, were evaluated as targets of Chk1, a kinase essential for the checkpoint. Fission yeast cdc2-3w Deltacdc25 cells, which express activated Cdc2 and lack Cdc25, were responsive to Wee1 but insensitive to Chk1 and irradiation. Expression of large amounts of Chk1 produced the same phenotype as did loss of the cdc25 gene in cdc2-3w cells. Cdc25 associated with Chk1 in vivo and was phosphorylated when copurified in Chk1 complexes. These findings identify Cdc25, but not Wee1, as a target of the DNA damage checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furnari, B -- Rhind, N -- Russell, P -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1495-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278510" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; CDC2 Protein Kinase/*metabolism ; Cell Cycle Proteins/*metabolism ; Cell Division ; *DNA Damage ; DNA Helicases/metabolism ; Fungal Proteins/*metabolism ; G2 Phase ; Gamma Rays ; Genes, Fungal ; *Mitosis ; Models, Biological ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae Proteins ; Schizosaccharomyces/cytology/genetics/*metabolism/radiation effects ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Temperature ; *ras-GRF1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-23
    Description: The fission yeast clade--comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus--occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131103/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131103/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rhind, Nicholas -- Chen, Zehua -- Yassour, Moran -- Thompson, Dawn A -- Haas, Brian J -- Habib, Naomi -- Wapinski, Ilan -- Roy, Sushmita -- Lin, Michael F -- Heiman, David I -- Young, Sarah K -- Furuya, Kanji -- Guo, Yabin -- Pidoux, Alison -- Chen, Huei Mei -- Robbertse, Barbara -- Goldberg, Jonathan M -- Aoki, Keita -- Bayne, Elizabeth H -- Berlin, Aaron M -- Desjardins, Christopher A -- Dobbs, Edward -- Dukaj, Livio -- Fan, Lin -- FitzGerald, Michael G -- French, Courtney -- Gujja, Sharvari -- Hansen, Klavs -- Keifenheim, Dan -- Levin, Joshua Z -- Mosher, Rebecca A -- Muller, Carolin A -- Pfiffner, Jenna -- Priest, Margaret -- Russ, Carsten -- Smialowska, Agata -- Swoboda, Peter -- Sykes, Sean M -- Vaughn, Matthew -- Vengrova, Sonya -- Yoder, Ryan -- Zeng, Qiandong -- Allshire, Robin -- Baulcombe, David -- Birren, Bruce W -- Brown, William -- Ekwall, Karl -- Kellis, Manolis -- Leatherwood, Janet -- Levin, Henry -- Margalit, Hanah -- Martienssen, Rob -- Nieduszynski, Conrad A -- Spatafora, Joseph W -- Friedman, Nir -- Dalgaard, Jacob Z -- Baumann, Peter -- Niki, Hironori -- Regev, Aviv -- Nusbaum, Chad -- BB/E023754/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- DP1 OD003958/OD/NIH HHS/ -- R01 GM069957/GM/NIGMS NIH HHS/ -- R01 GM076396/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-06/HG/NHGRI NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):930-6. doi: 10.1126/science.1203357. Epub 2011 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA. nick.rhind@umassmed.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21511999" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/genetics/physiology/ultrastructure ; DNA Transposable Elements ; Evolution, Molecular ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genes, Mating Type, Fungal ; *Genome, Fungal ; Genomics ; Glucose/metabolism ; Meiosis ; Molecular Sequence Annotation ; Molecular Sequence Data ; Phylogeny ; RNA, Antisense/genetics ; RNA, Fungal/genetics ; RNA, Small Interfering/genetics ; RNA, Untranslated/genetics ; Regulatory Elements, Transcriptional ; Schizosaccharomyces/*genetics/growth & development/metabolism ; Schizosaccharomyces pombe Proteins/genetics/metabolism ; Sequence Analysis, DNA ; Species Specificity ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-30
    Description: The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-27
    Description: Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase–dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57 KIP2 -mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57 KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-04
    Description: Many fundamental biological processes are studied using the fission yeast, Schizosaccharomyces pombe . Here we report the construction of a set of 281 haploid gene deletion strains covering many previously uncharacterized genes. This collection of strains was tested for growth under a variety of different stress conditions. We identified new genes involved in DNA metabolism, completion of the cell cycle, and morphogenesis. This subset of nonessential gene deletions will add to the toolkits available for the study of biological processes in S. pombe .
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...