ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2021-09-14
    Description: Due to the increase in the amount of copper sulphide minerals processed through concentration processes and the need to improve the efficiency of these production processes, the development of theoretical models is making an important contribution to generating a better understanding of their dynamics, making it possible to identify the optimal conditions for the recovery of minerals, the impact of the independent variables in the responses, and the sensitivity of the recovery to variations in both the input variables and the operational parameters. This paper proposes a method for modeling, sensitizing, and optimizing the mineral recovery in rougher cells using a discrete event simulation (DES) framework and the fitting of analytical models on the basis of operational data from a concentration pilot plant. A sensitivity analysis was performed for low, medium, and high levels of the operative variables and/or parameters. The outcomes of the modeling indicate that the optimum mineral recovery is reached at medium levels of the flow rate of gas, bubble size, turbulence dissipation rate, surface tension, Reynolds number of bubble, bubble–particle contact angle, superficial gas velocity and gas hold-up in the froth zone. Additionally, the optimal response is reached at maximum levels of particle size and density and at minimum levels of bubble speed, fluid kinematic viscosity and fluid density in the sampled range. Finally, the recovery has an asymptotic behavior over time; however, the optimum recovery depends on an economic analysis, examining the marginalization of the response over time in an operational context.
    Electronic ISSN: 2075-4701
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-26
    Description: The pre and postharvest disease named ‘aqueous spot’ is an emerging risk for sweet cherries growing in Jerte Valley (Cáceres, Spain). Early stages of the disease appear in the tree, but it is usually detected after harvesting, during the postharvest period. Symptoms include the appearance of skin discolouration and translucency in the shoulder areas. At the most advanced stages, a mycelium of white colour partially or completely covers the fruit. This manuscript provides a detailed description of the microbes involved in this disease, such as bacteria, yeasts, and moulds. Microbes of different cherry cultivars were studied during two consecutive seasons (2019 and 2020). The counts of bacteria and yeast in damaged tissues were higher (7.05 and 6.38 log10 CFU/g for total aerobic mesophilic microbes and yeasts, respectively) than sound tissues (6.08 and 5.19 log10 CFU/g, respectively). The Enterobacterales order dominated the bacteria population. Among yeasts, Yarrowia lipolytica, in 2019, and Metschnikowia pulcherrima and Metschnikowia viticola, in 2020, were consistently isolated from all samples. The presence of moulds was inconsistently detected at the early stage of this disease by plate counts. However, microscopic observations revealed the presence of hyphae in cherry flesh. Different pathogenic moulds were identified, although white mycelium, identified as Botrytis cinerea by molecular methods, was consistently isolated at later stages. Inoculation tests confirmed the involvement of white-mycelium B. cinerea in the development of this new postharvest disease in the Jerte Valley. Its combination with Enterobacterales enhanced the evolution of rotting, whereas the combination with yeasts decreased and delayed the symptoms. This work presents the first report of a consortia of microorganisms implicated in the development of ‘aqueous spot’, an emerging disease in sweet cherry cultivars in the Jerte Valley.
    Electronic ISSN: 2304-8158
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: Chalcocite is the most abundant secondary copper sulfide globally, with the highest copper content, and is easily treated by conventional hydrometallurgical processes, making it a very profitable mineral for extraction. Among the various leaching processes to treat chalcocite, chloride media show better results and have a greater industrial boom. Chalcocite dissolution is a two-stage process, the second being much slower than the first. During the second stage, in the first instance, it is possible to oxidize the covellite in a wide range of chloride concentrations or redox potentials (up to 75% extraction of Cu). Subsequently, CuS2 is formed, which is to be oxidized. It is necessary to work at high concentrations of chloride (〉2.5 mol/L) and/or increase the temperature to reach a redox potential of over 650 mV, which in turn decreases the thickness of the elemental sulfur layer on the mineral surface, facilitating chloride ions to generate a better porosity of this. Finally, it is concluded that the most optimal way to extract copper from chalcocite is, during the first stage, to work with high concentrations of chloride (50–100 g/L) and low concentrations of sulfuric acid (0.5 mol/L) at a temperature environment, as other variables become irrelevant during this stage if the concentration of chloride ions in the system is high. While in the second stage, it is necessary to increase the temperature of the system (moderate temperatures) or incorporate a high concentration of some oxidizing agent to avoid the passivation of the mineral.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...