ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 64 (1992), S. 181-195 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract In order to explore for the most effective strategy for using forests to mitigate global climate change, we have constructed a simple model of C uptake during forest growth and the fate of this C when forests are harvested and used as fuel to replace fossil fuels. We suggest that trees are equally effective in preventing the accumulation of CO2 in the atmosphere if they remove a unit of C from the atmosphere or if they supply a sustainable source of energy that substitutes for a unit of C discharged by burning fossil fuels. The model shows that the most effective strategy for using forest land to minimize increases in atmospheric CO2 will depend on the current status of the land, the productivity that can be expected, the efficiency with which the forest harvest is used to substitute for fossil fuels, and the time perspective of the analysis. For forests with large standing biomass and low productivity the most effective strategy is to protect the existing forest. For land with little standing biomass and low productivity, the most effective strategy is to reforest or otherwise manage the land for forest growth and C storage. Where high productivity can be expected, the most effective strategy is to manage the forest for a harvestable crop and to use the harvest with maximum efficiency either for long-lived products or to substitute for fossil fuels. The longer the time perspective, the more likely that harvesting and replanting will result in net C benefits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-08-01
    Print ISSN: 0049-6979
    Electronic ISSN: 1573-2932
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...