ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8469
    Keywords: Bacillus thuringiensis ; biological control ; Helicotylenchus multicinctus ; nematicide ; numerical response ; Paecilomyces marquandii ; Radopholus similis ; Streptomyces costaricanus ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of 24 treatment combinations of cultures of Streptomyces costaricanus sp. nov. (ATCC55274), Bacillus thuringiensis (ATCC55273) and a strain of Paecilomyces marquandii, nematicide (cadusaphos), and/or wheat mash on growth and response of potted banana plants (Musa AAA) and populations of Radopholus similis, Helicotylenchus multicinctus and free living nematodes were studied in Río Frío, Costa Rica. The best plant responses (height, leaf numbers, healthy root weight), lowest numbers of plant parasitic nematodes and highest numbers of free living nematodes were observed for treatments containing wheat as a component. Two treatments, viz. wheat + Streptomyces costaricanus (200-ml culture) and wheat + P. marquandii (200-ml culture), gave the overall best results. Numbers of free living nematodes increased up to 1500-fold only for treatments containing wheat. Significant positive correlations existed between numbers of free living nematodes and shoot weight, healthy root biomass, plant height, and leaf numbers. Non-wheat treatments, including nematicide only, gave the poorest responses in general. Observations of nematodes sampled 50 days following planting in wheat-containing treatments showed most of the free-living nematodes (≈ 90%) to be infected by nematophagous fungi (species not recorded). The results show that an organic amendment to soil, with or without a microbial component, can be an effective inducer of processes that regulate plant-parasitic nematode populations in soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Nematode suppressive soil ; false root knot nematode ; Nacobbus aberrans ; Meloidogyne incognita ; nematicidal microorganisms ; reproduction suppression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Soil from the chinampa agricultural system in the Valley of Mexico suppressed damage by plant-parasitic nematodes to tomatoes and beans in greenhouse and growth chamber trials. Sterilization of the chinampa soil resulted in a loss of the suppressive effect, thereby indicating that one or more biotic factors were responsible for the low incidence of nematode damage. Nine organisms were isolated from chinampa soil, which showed antinematodal properties in culture. Naturally occurring populations of plant-parasitic nematodes were of lower incidence in chinampa soil than in Chapingo soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 18 (1992), S. 775-783 
    ISSN: 1573-1561
    Keywords: Nematode suppressive soil ; Paecilomyces marquandii ; P. lilacinus ; Meloidogyne incognita ; biological control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Two applications of isolates ofPaecilomyces marquandii from suppressive chinampa soils or P. lilacinus from Peru, fungi that parasitize nematode eggs, generally gave better control of tomato root-knot due toMeloidogyne incognita than did a single application. The effects on root galling by each of thePaecilomyces isolates varied between experiments; however, the ovicidal potential of the three isolates did not differ significantly. Proteins specific for each of the isolates were demonstrated by SDS gel electrophoresis. The results indicate thatP. marquandii is one of the natural soil organisms that contribute to nematode suppression in the chinampa agricultural soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...