ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Wang, Z., Zhu, B., Zhang, M., Parikh, H., Jia, J., Chung, C. C., Sampson, J. N., Hoskins, J. W., Hutchinson, A., Burdette, L., Ibrahim, A., Hautman, C., Raj, P. S., Abnet, C. C., Adjei, A. A., Ahlbom, A., Albanes, D., Allen, N. E., Ambrosone, C. B., Aldrich, M., Amiano, P., Amos, C., Andersson, U., Andriole, G., Andrulis, I. L., Arici, C., Arslan, A. A., Austin, M. A., Baris, D., Barkauskas, D. A., Bassig, B. A., Beane Freeman, L. E., Berg, C. D., Berndt, S. I., Bertazzi, P. A., Biritwum, R. B., Black, A., Blot, W., Boeing, H., Boffetta, P., Bolton, K., Boutron-Ruault, M.-C., Bracci, P. M., Brennan, P., Brinton, L. A., Brotzman, M., Bueno-de-Mesquita, H. B., Buring, J. E., Butler, M. A., Cai, Q., Cancel-Tassin, G., Canzian, F., Cao, G., Caporaso, N. E., Carrato, A., Carreon, T., Carta, A., Chang, G.-C., Chang, I.-S., Chang-Claude, J., Che, X., Chen, C.-J., Chen, C.-Y., Chen, C.-H., Chen, C., Chen, K.-Y., Chen, Y.-M., Chokkalingam, A. P., Chu, L. W., Clavel-Chapelon, F., Colditz, G. A., Colt, J. S., Conti, D., Cook, M. B., Cortessis, V. K., Crawford, E. D., Cussenot, O., Davis, F. G., De Vivo, I., Deng, X., Ding, T., Dinney, C. P., Di Stefano, A. L., Diver, W. R., Duell, E. J., Elena, J. W., Fan, J.-H., Feigelson, H. S., Feychting, M., Figueroa, J. D., Flanagan, A. M., Fraumeni, J. F., Freedman, N. D., Fridley, B. L., Fuchs, C. S., Gago-Dominguez, M., Gallinger, S., Gao, Y.-T., Gapstur, S. M., Garcia-Closas, M., Garcia-Closas, R., Gastier-Foster, J. M., Gaziano, J. M., Gerhard, D. S., Giffen, C. A., Giles, G. G., Gillanders, E. M., Giovannucci, E. L., Goggins, M., Gokgoz, N., Goldstein, A. M., Gonzalez, C., Gorlick, R., Greene, M. H., Gross, M., Grossman, H. B., Grubb, R., Gu, J., Guan, P., Haiman, C. A., Hallmans, G., Hankinson, S. E., Harris, C. C., Hartge, P., Hattinger, C., Hayes, R. B., He, Q., Helman, L., Henderson, B. E., Henriksson, R., Hoffman-Bolton, J., Hohensee, C., Holly, E. A., Hong, Y.-C., Hoover, R. N., Hosgood, H. D., Hsiao, C.-F., Hsing, A. W., Hsiung, C. A., Hu, N., Hu, W., Hu, Z., Huang, M.-S., Hunter, D. J., Inskip, P. D., Ito, H., Jacobs, E. J., Jacobs, K. B., Jenab, M., Ji, B.-T., Johansen, C., Johansson, M., Johnson, A., Kaaks, R., Kamat, A. M., Kamineni, A., Karagas, M., Khanna, C., Khaw, K.-T., Kim, C., Kim, I.-S., Kim, J. H., Kim, Y. H., Kim, Y.-C., Kim, Y. T., Kang, C. H., Jung, Y. J., Kitahara, C. M., Klein, A. P., Klein, R., Kogevinas, M., Koh, W.-P., Kohno, T., Kolonel, L. N., Kooperberg, C., Kratz, C. P., Krogh, V., Kunitoh, H., Kurtz, R. C., Kurucu, N., Lan, Q., Lathrop, M., Lau, C. C., Lecanda, F., Lee, K.-M., Lee, M. P., Le Marchand, L., Lerner, S. P., Li, D., Liao, L. M., Lim, W.-Y., Lin, D., Lin, J., Lindstrom, S., Linet, M. S., Lissowska, J., Liu, J., Ljungberg, B., Lloreta, J., Lu, D., Ma, J., Malats, N., Mannisto, S., Marina, N., Mastrangelo, G., Matsuo, K., McGlynn, K. A., McKean-Cowdin, R., McNeill, L. H., McWilliams, R. R., Melin, B. S., Meltzer, P. S., Mensah, J. E., Miao, X., Michaud, D. S., Mondul, A. M., Moore, L. E., Muir, K., Niwa, S., Olson, S. H., Orr, N., Panico, S., Park, J. Y., Patel, A. V., Patino-Garcia, A., Pavanello, S., Peeters, P. H. M., Peplonska, B., Peters, U., Petersen, G. M., Picci, P., Pike, M. C., Porru, S., Prescott, J., Pu, X., Purdue, M. P., Qiao, Y.-L., Rajaraman, P., Riboli, E., Risch, H. A., Rodabough, R. J., Rothman, N., Ruder, A. M., Ryu, J.-S., Sanson, M., Schned, A., Schumacher, F. R., Schwartz, A. G., Schwartz, K. L., Schwenn, M., Scotlandi, K., Seow, A., Serra, C., Serra, M., Sesso, H. D., Severi, G., Shen, H., Shen, M., Shete, S., Shiraishi, K., Shu, X.-O., Siddiq, A., Sierrasesumaga, L., Sierri, S., Loon Sihoe, A. D., Silverman, D. T., Simon, M., Southey, M. C., Spector, L., Spitz, M., Stampfer, M., Stattin, P., Stern, M. C., Stevens, V. L., Stolzenberg-Solomon, R. Z., Stram, D. O., Strom, S. S., Su, W.-C., Sund, M., Sung, S. W., Swerdlow, A., Tan, W., Tanaka, H., Tang, W., Tang, Z.-Z., Tardon, A., Tay, E., Taylor, P. R., Tettey, Y., Thomas, D. M., Tirabosco, R., Tjonneland, A., Tobias, G. S., Toro, J. R., Travis, R. C., Trichopoulos, D., Troisi, R., Truelove, A., Tsai, Y.-H., Tucker, M. A., Tumino, R., Van Den Berg, D., Van Den Eeden, S. K., Vermeulen, R., Vineis, P., Visvanathan, K., Vogel, U., Wang, C., Wang, C., Wang, J., Wang, S. S., Weiderpass, E., Weinstein, S. J., Wentzensen, N., Wheeler, W., White, E., Wiencke, J. K., Wolk, A., Wolpin, B. M., Wong, M. P., Wrensch, M., Wu, C., Wu, T., Wu, X., Wu, Y.-L., Wunder, J. S., Xiang, Y.-B., Xu, J., Yang, H. P., Yang, P.-C., Yatabe, Y., Ye, Y., Yeboah, E. D., Yin, Z., Ying, C., Yu, C.-J., Yu, K., Yuan, J.-M., Zanetti, K. A., Zeleniuch-Jacquotte, A., Zheng, W., Zhou, B., Mirabello, L., Savage, S. A., Kraft, P., Chanock, S. J., Yeager, M., Landi, M. T., Shi, J., Chatterjee, N., Amundadottir, L. T.
    Oxford University Press
    Publication Date: 2014-11-21
    Description: Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 x 10 –39 ; Region 3: rs2853677, P = 3.30 x 10 –36 and P Conditional = 2.36 x 10 –8 ; Region 4: rs2736098, P = 3.87 x 10 –12 and P Conditional = 5.19 x 10 –6 , Region 5: rs13172201, P = 0.041 and P Conditional = 2.04 x 10 –6 ; and Region 6: rs10069690, P = 7.49 x 10 –15 and P Conditional = 5.35 x 10 –7 ) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 x 10 –18 and P Conditional = 7.06 x 10 –16 ). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-05
    Description: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals ( approximately 200 nm to 2 mum in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Henry N -- Fromme, Petra -- Barty, Anton -- White, Thomas A -- Kirian, Richard A -- Aquila, Andrew -- Hunter, Mark S -- Schulz, Joachim -- DePonte, Daniel P -- Weierstall, Uwe -- Doak, R Bruce -- Maia, Filipe R N C -- Martin, Andrew V -- Schlichting, Ilme -- Lomb, Lukas -- Coppola, Nicola -- Shoeman, Robert L -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Foucar, Lutz -- Kimmel, Nils -- Weidenspointner, Georg -- Holl, Peter -- Liang, Mengning -- Barthelmess, Miriam -- Caleman, Carl -- Boutet, Sebastien -- Bogan, Michael J -- Krzywinski, Jacek -- Bostedt, Christoph -- Bajt, Sasa -- Gumprecht, Lars -- Rudek, Benedikt -- Erk, Benjamin -- Schmidt, Carlo -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Messerschmidt, Marc -- Bozek, John D -- Hau-Riege, Stefan P -- Frank, Matthias -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Williams, Garth J -- Hajdu, Janos -- Timneanu, Nicusor -- Seibert, M Marvin -- Andreasson, Jakob -- Rocker, Andrea -- Jonsson, Olof -- Svenda, Martin -- Stern, Stephan -- Nass, Karol -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schmidt, Kevin E -- Wang, Xiaoyu -- Grotjohann, Ingo -- Holton, James M -- Barends, Thomas R M -- Neutze, Richard -- Marchesini, Stefano -- Fromme, Raimund -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Andersson, Inger -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Spence, John C H -- 1R01GM095583-01/GM/NIGMS NIH HHS/ -- 1U54GM094625-01/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):73-7. doi: 10.1038/nature09750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. henry.chapman@desy.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293373" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/instrumentation/*methods ; Lasers ; Models, Molecular ; Nanoparticles/*chemistry ; Nanotechnology/instrumentation/*methods ; Photosystem I Protein Complex/*chemistry ; Protein Conformation ; Time Factors ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-29
    Description: The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, N D -- Hampton, C Y -- Martin, A V -- Starodub, D -- Sierra, R G -- Barty, A -- Aquila, A -- Schulz, J -- Lomb, L -- Steinbrener, J -- Shoeman, R L -- Kassemeyer, S -- Bostedt, C -- Bozek, J -- Epp, S W -- Erk, B -- Hartmann, R -- Rolles, D -- Rudenko, A -- Rudek, B -- Foucar, L -- Kimmel, N -- Weidenspointner, G -- Hauser, G -- Holl, P -- Pedersoli, E -- Liang, M -- Hunter, M S -- Gumprecht, L -- Coppola, N -- Wunderer, C -- Graafsma, H -- Maia, F R N C -- Ekeberg, T -- Hantke, M -- Fleckenstein, H -- Hirsemann, H -- Nass, K -- White, T A -- Tobias, H J -- Farquar, G R -- Benner, W H -- Hau-Riege, S P -- Reich, C -- Hartmann, A -- Soltau, H -- Marchesini, S -- Bajt, S -- Barthelmess, M -- Bucksbaum, P -- Hodgson, K O -- Struder, L -- Ullrich, J -- Frank, M -- Schlichting, I -- Chapman, H N -- Bogan, M J -- England -- Nature. 2012 Jun 27;486(7404):513-7. doi: 10.1038/nature11222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22739316" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols/*analysis/*chemistry ; Amino Acids/chemistry ; Electrons ; *Fractals ; Lasers ; *Mass Spectrometry ; *Motion ; Nanoparticles ; Particle Size ; Proteins/chemistry ; Solvents/chemistry ; Soot/*analysis/*chemistry ; Vibration ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-22
    Description: Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 A resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kupitz, Christopher -- Basu, Shibom -- Grotjohann, Ingo -- Fromme, Raimund -- Zatsepin, Nadia A -- Rendek, Kimberly N -- Hunter, Mark S -- Shoeman, Robert L -- White, Thomas A -- Wang, Dingjie -- James, Daniel -- Yang, Jay-How -- Cobb, Danielle E -- Reeder, Brenda -- Sierra, Raymond G -- Liu, Haiguang -- Barty, Anton -- Aquila, Andrew L -- Deponte, Daniel -- Kirian, Richard A -- Bari, Sadia -- Bergkamp, Jesse J -- Beyerlein, Kenneth R -- Bogan, Michael J -- Caleman, Carl -- Chao, Tzu-Chiao -- Conrad, Chelsie E -- Davis, Katherine M -- Fleckenstein, Holger -- Galli, Lorenzo -- Hau-Riege, Stefan P -- Kassemeyer, Stephan -- Laksmono, Hartawan -- Liang, Mengning -- Lomb, Lukas -- Marchesini, Stefano -- Martin, Andrew V -- Messerschmidt, Marc -- Milathianaki, Despina -- Nass, Karol -- Ros, Alexandra -- Roy-Chowdhury, Shatabdi -- Schmidt, Kevin -- Seibert, Marvin -- Steinbrener, Jan -- Stellato, Francesco -- Yan, Lifen -- Yoon, Chunhong -- Moore, Thomas A -- Moore, Ana L -- Pushkar, Yulia -- Williams, Garth J -- Boutet, Sebastien -- Doak, R Bruce -- Weierstall, Uwe -- Frank, Matthias -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- 1R01GM095583/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):261-5. doi: 10.1038/nature13453. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2]. ; Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ; Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] European XFEL GmbH, Notkestrasse 85, 22607 Hamburg, Germany. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA [2] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; 1] Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany [2] Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics and Astronomy, Uppsala University, Regementsvagen 1, SE-752 37 Uppsala, Sweden. ; 1] Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA [2] University of Regina, 3737 Wascana Pkwy Regina, Saskatchewan S4S 0A2, Canada. ; Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA. ; 1] Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Max Planck Advanced Study Group, Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. ; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department ARC Centre of Excellence for Coherent X-ray Science, Department of Physics, University of Melbourne, Parkville VIC 3010, Australia. ; Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; 1] Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany [2] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [3] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. ; 1] Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA [2] Uppsala University, Sankt Olofsgatan 10B, 753 12 Uppsala, Sweden. ; 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany [3] Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043005" target="_blank"〉PubMed〈/a〉
    Keywords: *Crystallography, X-Ray ; Cyanobacteria/*chemistry ; *Models, Molecular ; Photosystem II Protein Complex/*chemistry ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-08-22
    Description: Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oliver, Kerry M -- Degnan, Patrick H -- Hunter, Martha S -- Moran, Nancy A -- 1K 12 GM00708/GM/NIGMS NIH HHS/ -- K12 GM000708/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Aug 21;325(5943):992-4. doi: 10.1126/science.1174463.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, University of Georgia, Athens, GA 30602, USA. kmoliver@uga.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19696350" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aphids/genetics/*microbiology/*parasitology/physiology ; Cytotoxins/genetics ; Enterobacteriaceae/genetics/pathogenicity/*physiology/*virology ; Female ; Genotype ; Host-Parasite Interactions/genetics ; Larva ; Phenotype ; Podoviridae/*genetics/physiology ; Reverse Transcriptase Polymerase Chain Reaction ; *Symbiosis ; Virulence Factors/genetics ; Wasps/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-09
    Description: Maternally inherited bacterial symbionts of arthropods are common, yet symbiont invasions of host populations have rarely been observed. Here, we show that Rickettsia sp. nr. bellii swept into a population of an invasive agricultural pest, the sweet potato whitefly, Bemisia tabaci, in just 6 years. Compared with uninfected whiteflies, Rickettsia-infected whiteflies produced more offspring, had higher survival to adulthood, developed faster, and produced a higher proportion of daughters. The symbiont thus functions as both mutualist and reproductive manipulator. The observed increased performance and sex-ratio bias of infected whiteflies are sufficient to explain the spread of Rickettsia across the southwestern United States. Symbiont invasions such as this represent a sudden evolutionary shift for the host, with potentially large impacts on its ecology and invasiveness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Himler, Anna G -- Adachi-Hagimori, Tetsuya -- Bergen, Jacqueline E -- Kozuch, Amaranta -- Kelly, Suzanne E -- Tabashnik, Bruce E -- Chiel, Elad -- Duckworth, Victoria E -- Dennehy, Timothy J -- Zchori-Fein, Einat -- Hunter, Martha S -- 1K 12 GM00708/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):254-6. doi: 10.1126/science.1199410.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Insect Science, The University of Arizona, Post Office Box 210106, Tucson, AZ 85721-0106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474763" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; *Genetic Fitness ; Hemiptera/genetics/*microbiology/*physiology ; Male ; Molecular Sequence Data ; Reproduction ; Rickettsia/genetics/*physiology ; Sex Ratio ; Southwestern United States ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-02
    Description: Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788707/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788707/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boutet, Sebastien -- Lomb, Lukas -- Williams, Garth J -- Barends, Thomas R M -- Aquila, Andrew -- Doak, R Bruce -- Weierstall, Uwe -- DePonte, Daniel P -- Steinbrener, Jan -- Shoeman, Robert L -- Messerschmidt, Marc -- Barty, Anton -- White, Thomas A -- Kassemeyer, Stephan -- Kirian, Richard A -- Seibert, M Marvin -- Montanez, Paul A -- Kenney, Chris -- Herbst, Ryan -- Hart, Philip -- Pines, Jack -- Haller, Gunther -- Gruner, Sol M -- Philipp, Hugh T -- Tate, Mark W -- Hromalik, Marianne -- Koerner, Lucas J -- van Bakel, Niels -- Morse, John -- Ghonsalves, Wilfred -- Arnlund, David -- Bogan, Michael J -- Caleman, Carl -- Fromme, Raimund -- Hampton, Christina Y -- Hunter, Mark S -- Johansson, Linda C -- Katona, Gergely -- Kupitz, Christopher -- Liang, Mengning -- Martin, Andrew V -- Nass, Karol -- Redecke, Lars -- Stellato, Francesco -- Timneanu, Nicusor -- Wang, Dingjie -- Zatsepin, Nadia A -- Schafer, Donald -- Defever, James -- Neutze, Richard -- Fromme, Petra -- Spence, John C H -- Chapman, Henry N -- Schlichting, Ilme -- 1R01GM095583/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 20;337(6092):362-4. doi: 10.1126/science.1217737. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. sboutet@slac.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray/*methods ; Lasers ; Muramidase/chemistry/radiation effects ; *Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-01
    Description: The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the "diffraction-before-destruction" approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redecke, Lars -- Nass, Karol -- DePonte, Daniel P -- White, Thomas A -- Rehders, Dirk -- Barty, Anton -- Stellato, Francesco -- Liang, Mengning -- Barends, Thomas R M -- Boutet, Sebastien -- Williams, Garth J -- Messerschmidt, Marc -- Seibert, M Marvin -- Aquila, Andrew -- Arnlund, David -- Bajt, Sasa -- Barth, Torsten -- Bogan, Michael J -- Caleman, Carl -- Chao, Tzu-Chiao -- Doak, R Bruce -- Fleckenstein, Holger -- Frank, Matthias -- Fromme, Raimund -- Galli, Lorenzo -- Grotjohann, Ingo -- Hunter, Mark S -- Johansson, Linda C -- Kassemeyer, Stephan -- Katona, Gergely -- Kirian, Richard A -- Koopmann, Rudolf -- Kupitz, Chris -- Lomb, Lukas -- Martin, Andrew V -- Mogk, Stefan -- Neutze, Richard -- Shoeman, Robert L -- Steinbrener, Jan -- Timneanu, Nicusor -- Wang, Dingjie -- Weierstall, Uwe -- Zatsepin, Nadia A -- Spence, John C H -- Fromme, Petra -- Schlichting, Ilme -- Duszenko, Michael -- Betzel, Christian -- Chapman, Henry N -- 1R01GM095583/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):227-30. doi: 10.1126/science.1229663. Epub 2012 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lubeck, at Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23196907" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Cathepsin B/antagonists & inhibitors/*chemistry ; Crystallization ; Crystallography, X-Ray ; Enzyme Precursors/chemistry ; Glycosylation ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protozoan Proteins/antagonists & inhibitors/*chemistry ; Sf9 Cells ; Spodoptera ; Trypanosoma brucei brucei/*enzymology ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-13
    Description: The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-angstrom limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 angstroms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 angstroms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ayyer, Kartik -- Yefanov, Oleksandr M -- Oberthur, Dominik -- Roy-Chowdhury, Shatabdi -- Galli, Lorenzo -- Mariani, Valerio -- Basu, Shibom -- Coe, Jesse -- Conrad, Chelsie E -- Fromme, Raimund -- Schaffer, Alexander -- Dorner, Katerina -- James, Daniel -- Kupitz, Christopher -- Metz, Markus -- Nelson, Garrett -- Xavier, Paulraj Lourdu -- Beyerlein, Kenneth R -- Schmidt, Marius -- Sarrou, Iosifina -- Spence, John C H -- Weierstall, Uwe -- White, Thomas A -- Yang, Jay-How -- Zhao, Yun -- Liang, Mengning -- Aquila, Andrew -- Hunter, Mark S -- Robinson, Joseph S -- Koglin, Jason E -- Boutet, Sebastien -- Fromme, Petra -- Barty, Anton -- Chapman, Henry N -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- R01 GM097463/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Feb 11;530(7589):202-6. doi: 10.1038/nature16949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany. ; Department of Physics, University of Hamburg, 22761 Hamburg, Germany. ; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA. ; Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA. ; Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; Physics Department, University of Wisconsin, Milwaukee, Wisconsin 53211, USA. ; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, GR-70013 Crete, Greece. ; Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC), National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; Centre for Ultrafast Imaging, 22607 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863980" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray/*methods ; Models, Molecular ; Photosystem II Protein Complex/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-12
    Description: Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography Nature 541, 7636 (2017). doi:10.1038/nature20599 Authors: J. R. Stagno, Y. Liu, Y. R. Bhandari, C. E. Conrad, S. Panja, M. Swain, L. Fan, G. Nelson, C. Li, D. R. Wendel, T. A. White, J. D. Coe, M. O. Wiedorn, J. Knoska, D. Oberthuer, R. A. Tuckey, P. Yu, M. Dyba, S. G. Tarasov, U. Weierstall, T. D. Grant, C. D. Schwieters, J. Zhang, A. R. Ferré-D’Amaré, P. Fromme, D. E. Draper, M. Liang, M. S. Hunter, S. Boutet, K. Tan, X. Zuo, X. Ji, A. Barty, N. A. Zatsepin, H. N. Chapman, J. C. H. Spence, S. A. Woodson & Y.-X. Wang Riboswitches are structural RNA elements that are generally located in the 5′ untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of ‘mix-and-inject’ time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...