ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-10
    Description: CRISM hyperspectral (1.0-2.65 µm) along-track oversampled observations (ATOs) covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6 m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca-sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising ground waters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates, in both scenarios as the aqueous environment evolved to very arid conditions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-09
    Description: Mapping of the aphelion clouds over the Tharsis plateau and retrieval of their particle size and visible opacity are made possible by the OMEGA imaging spectrometer aboard Mars Express. Observations cover the period from MY26 Ls = 330° to MY29 Ls = 180° and are acquired at various local times, ranging from 8 AM to 6 PM. Cloud maps of the Tharsis region constructed using the 3.1 μm ice absorption band reveal the seasonal and diurnal evolution of aphelion clouds. Four distinct types of clouds are identified: morning hazes, topographically controlled hazes, cumulus clouds and thick hazes. The location and time of occurrence of these clouds are analyzed and their respective formation process is discussed. An inverse method for retrieving cloud particle size and opacity is then developed and can only be applied to thick hazes. The relative error of these measurements is less than 30% for cloud particle size and 20% for opacity. Two groups of particles can be distinguished. The first group is found over flat plains and is composed of relatively small particles, ranging in size from 2 to 3.5 μm. The second group is characterized by particle sizes of ∼5 μm which appear to be quite constant over Ls and local time. It is found west of Ascraeus and Pavonis Mons, and near Lunae Planum. These regions are preferentially exposed to anabatic winds, which may control the formation of these particles and explain their distinct properties. The water ice column is equal to 2.9 pr.μm on average, and can reach 5.2 pr.μm in the thickest clouds of Tharsis.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-22
    Description: Airborne dust is the main driver of Martian atmospheric temperature, and accurately accounting for its radiative effect in Global Climate Models (GCMs) is essential. This requires the modeling of the dust distribution and radiative properties, and when trying to simulate the true climate variability, the use of the observed dust column opacity to guide the model. A recurrent problem has been the inability of Mars GCMs to predict realistic temperatures while using both the observed dust radiative properties and column opacity. One would have to drive the model with a tuned opacity to reach an agreement with the observations, thereby losing its self-consistency. In this paper, we show that using the most recently derived dust radiative properties in the LMD (Laboratoire de Météorologie Dynamique) GCM solves this problem, which was mainly due to the underestimation of the dust single scattering albedo in the solar domain. However, an overall warm temperature bias remains above the 1 hPa pressure level. We therefore refine the model by implementing a “semi-interactive” dust transport scheme which is coupled to the radiative transfer calculations. This scheme allows a better representation of the dust layer depth in the model and thereby removes the remaining warm bias. The LMD/GCM is now able to predict accurate temperatures without any tuning of the dust opacity used to guide the model. Remaining discrepancies are discussed, and seem to be primarily due to the neglect of the radiative effect of water-ice clouds, and secondarily to persisting uncertainties in the dust spatial distribution.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-08
    Description: Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-04
    Description: A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 +/- 0.62 kilometers. The dust's cross section weighted mean radius was 1.47 +/- 0.21 micrometers (mm) at Gusev and 1.52 +/- 0.18 mm at Meridiani. Comparison of visible optical depths with 9-mm optical depths shows a visible-to-infrared optical depth ratio of 2.0 +/- 0.2 for comparison with previous monitoring of infrared optical depths.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lemmon, M T -- Wolff, M J -- Smith, M D -- Clancy, R T -- Banfield, D -- Landis, G A -- Ghosh, A -- Smith, P H -- Spanovich, N -- Whitney, B -- Whelley, P -- Greeley, R -- Thompson, S -- Bell, J F 3rd -- Squyres, S W -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1753-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Texas A&M University, College Station, TX 77843, USA. lemmon@tamu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576613" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Atmosphere ; Carbon Dioxide ; Extraterrestrial Environment ; *Mars ; Solar System ; Spacecraft ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-08-07
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivinerich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (+/-5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% +/-5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 microm in hollows to approximately 0.5 to 3 mm in soils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christensen, P R -- Ruff, S W -- Fergason, R L -- Knudson, A T -- Anwar, S -- Arvidson, R E -- Bandfield, J L -- Blaney, D L -- Budney, C -- Calvin, W M -- Glotch, T D -- Golombek, M P -- Gorelick, N -- Graff, T G -- Hamilton, V E -- Hayes, A -- Johnson, J R -- McSween, H Y Jr -- Mehall, G L -- Mehall, L K -- Moersch, J E -- Morris, R V -- Rogers, A D -- Smith, M D -- Squyres, S W -- Wolff, M J -- Wyatt, M B -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):837-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Arizona State University, Tempe, AZ 85287, USA. phil.christensen@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297667" target="_blank"〉PubMed〈/a〉
    Keywords: Carbonates ; Geologic Sediments ; Interferometry ; Iron Compounds ; Magnesium Compounds ; *Mars ; *Minerals ; Oxides ; Silicates ; Spectrum Analysis ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-04
    Description: Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Michael D -- Wolff, Michael J -- Lemmon, Mark T -- Spanovich, Nicole -- Banfield, Don -- Budney, Charles J -- Clancy, R Todd -- Ghosh, Amitabha -- Landis, Geoffrey A -- Smith, Peter -- Whitney, Barbara -- Christensen, Philip R -- Squyres, Steven W -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1750-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. Michael.D.Smith@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576612" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Atmosphere ; Carbon Dioxide ; Extraterrestrial Environment ; *Mars ; Seasons ; Spectrum Analysis ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-08-07
    Description: Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, J F 3rd -- Squyres, S W -- Arvidson, R E -- Arneson, H M -- Bass, D -- Blaney, D -- Cabrol, N -- Calvin, W -- Farmer, J -- Farrand, W H -- Goetz, W -- Golombek, M -- Grant, J A -- Greeley, R -- Guinness, E -- Hayes, A G -- Hubbard, M Y H -- Herkenhoff, K E -- Johnson, M J -- Johnson, J R -- Joseph, J -- Kinch, K M -- Lemmon, M T -- Li, R -- Madsen, M B -- Maki, J N -- Malin, M -- McCartney, E -- McLennan, S -- McSween, H Y Jr -- Ming, D W -- Moersch, J E -- Morris, R V -- Dobrea, E Z Noe -- Parker, T J -- Proton, J -- Rice, J W Jr -- Seelos, F -- Soderblom, J -- Soderblom, L A -- Sohl-Dickstein, J N -- Sullivan, R J -- Wolff, M J -- Wang, A -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):800-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cornell University, Ithaca, NY 14853-6801, USA. jfb8@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297658" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Iron Compounds ; *Mars ; Minerals ; Silicates ; Solar System ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-04
    Description: Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, J F 3rd -- Squyres, S W -- Arvidson, R E -- Arneson, H M -- Bass, D -- Calvin, W -- Farrand, W H -- Goetz, W -- Golombek, M -- Greeley, R -- Grotzinger, J -- Guinness, E -- Hayes, A G -- Hubbard, M Y H -- Herkenhoff, K E -- Johnson, M J -- Johnson, J R -- Joseph, J -- Kinch, K M -- Lemmon, M T -- Li, R -- Madsen, M B -- Maki, J N -- Malin, M -- McCartney, E -- McLennan, S -- McSween, H Y Jr -- Ming, D W -- Morris, R V -- Dobrea, E Z Noe -- Parker, T J -- Proton, J -- Rice, J W Jr -- Seelos, F -- Soderblom, J M -- Soderblom, L A -- Sohl-Dickstein, J N -- Sullivan, R J -- Weitz, C M -- Wolff, M J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1703-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca NY 14853, USA. jfb8@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576603" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Ice ; *Mars ; Silicates ; Spacecraft ; Spectrum Analysis ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-04
    Description: The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (approximately 20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christensen, P R -- Wyatt, M B -- Glotch, T D -- Rogers, A D -- Anwar, S -- Arvidson, R E -- Bandfield, J L -- Blaney, D L -- Budney, C -- Calvin, W M -- Fallacaro, A -- Fergason, R L -- Gorelick, N -- Graff, T G -- Hamilton, V E -- Hayes, A G -- Johnson, J R -- Knudson, A T -- McSween, H Y Jr -- Mehall, G L -- Mehall, L K -- Moersch, J E -- Morris, R V -- Smith, M D -- Squyres, S W -- Ruff, S W -- Wolff, M J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1733-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological Sciences, Arizona State University, Tempe, AZ 85287, USA. phil.christensen@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576609" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Sulfate ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Iron Compounds ; Magnesium Compounds ; Magnesium Sulfate ; *Mars ; *Minerals ; Silicates ; Spacecraft ; Sulfates ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...