ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Abstract Although steady, isotropic Darcy flows are inherently laminar and non‐mixing in the absence of diffusion, it is well understood that transient forcing via engineered pumping schemes can induce rapid, chaotic mixing flows in groundwater. In this study we explore the propensity for such mixing to arise in natural groundwater systems subject to cyclical forcings, e.g. tidal or seasonal influences. Using a conventional linear groundwater flow model subject to tidal forcing, we show that under certain conditions these flows generate Lagrangian transport and mixing phenomena (chaotic advection) near the tidal boundary. We show that aquifer heterogeneity, storativity, and forcing magnitude cause reversals in flow direction over the forcing cycle which, in turn, generate coherent Lagrangian structures and chaos. These features significantly augment fluid mixing and transport, leading to anomalous residence time distributions, flow segregation, and the potential for profoundly altered reaction kinetics. We define the dimensionless parameter groups which govern this phenomenon and explore these groups in connection with a set of well‐characterised tidal systems. The potential for Lagrangian chaos to be present near discharge boundaries must be recognized and assessed in field studies.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...