ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this study outputs from four current General Circulation Models (GCMs) were used to project forest fire danger levels in Canada and Russia under a warmer climate. Temperature and precipitation anomalies between 1 × CO2 and 2 × CO2 runs were combined with baseline observed weather data for both countries for the 1980–1989 period. Forecast seasonal fire weather severity was similar for the four GCMs, indicating large increases in the areal extent of extreme fire danger in both countries under a 2 × CO2 climate scenario. A monthly analysis, using the Canadian GCM, showed an earlier start to the fire season, and significant increases in the area experiencing high to extreme fire danger in both Canada and Russia, particularly during June and July. Climate change as forecast has serious implications for forest fire management in both countries. More severe fire weather, coupled with continued economic constraints and downsizing, mean more fire activity in the future is a virtual certainty. The likely response will be a restructuring of protection priorities to support more intensive protection of smaller, high-value areas, and a return to natural fire regimes over larger areas of both Canada and Russia, with resultant significant impacts on the carbon budget.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-02-01
    Description: In 1975 and 1976, an experimental burning program was conducted in an immature stand of boreal jack pine (Pinus banksiana Lamb.) growing on level, granitic outwash sands in northern Ontario. Nine 0.4-ha plots were burned under a range of fire weather conditions and sampling was conducted to examine the effect of fire on soil chemical changes and revegetation. Results indicated that depth of burn (DOB) affected both soil chemical changes and plant succession on these pine sites. Vaccinium angustifolium Ait., Oryzopsis spp,. Waldsteinia fragarioides (Michx.) Tratt, Salix spp. and Viola adunca Sm. increased in cover at two levels of DOB but the increase was greatest at the lower DOB and decreased to pre-burn levels after 10 yr. Comptonia peregrina (L.) Coult., Epilobium angustifolium L., Polytrichum commune Hedw. and Amelanchier sanguinea (Pursh) DC. were not found in the pre-burn surveys but appeared after burning. Vegetation cover for these species was always higher at the deeper DOB but decreased almost to zero after 10 yr. Other species such as Pleurozium schreberi (Brid.) Mitt., Linnaea borealis L., Corylus cornuta Marsh., Cladina rangiferina (L.) Nyl. and Aralia nudicaulis L. were eliminated from the site and did not recover even after 10 yr. Soil pH increased 0.3 to 1.0 pH units in the organic and mineral soil layers. The rate of increase in pH was always steeper at the higher DOB and pH returned to pre-burn levels in the mineral soil layers after 10 yr. Immediately after burning, exchangeable Ca in the mineral soil layers doubled but 10 yr later, Ca returned to pre-burn levels. Phosphorus and K increased in the mineral soil, leveled off and were still elevated after 10 yr. Total Kjeldahl N was reduced by 50% in the organic soil while N in all mineral soils increased, and was still increasing after 10 yr. Except for immediate post-fire increases in pH, Ca and N, soil chemical changes were small or they rebounded to pre-burn levels 10 yr after burning. Therefore it is unlikely that these changes were the cause of the plant cover changes that persisted to 10 yr. Key words: Soil nutrients, plant succession, fire, depth of burn, jack pine
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-01-18
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-03
    Description: To fully understand the carbon (C) cycle impacts of forest fires, both C emissions during the fire and post-disturbance fluxes need to be considered. The latter are dominated by soil surface CO2 flux (Fs), which is still subject to large uncertainties. Fire is generally regarded as the most important factor influencing succession in the boreal forest biome and fire dependant species such as jack pine are widespread. In May 2007, we took concurrent Fs and soil temperature (Ts) measurements in boreal jack pine fire scars aged between 0 and 59 years since fire. To allow comparisons between scars, we adjusted Fs for Ts (FsT) using a Q10 of 2. Mean FsT ranged from 0.56 (± 0.30 sd) to 1.94 (± 0.74 sd) μmol CO2 m−2 s−1. Our results indicate a difference in mean FsT between recently burned (4 to 8 days post fire) and non-burned mature (59 years since fire) forest (P 〈 0.001), though no difference was detected between recently burned (4 to 8 days post fire) and non-burned young (16 years since fire) forest (P = 0.785). There was a difference in mean FsT between previously young (16 years since fire) and intermediate aged (32 years since fire) scars that were both subject to fire in 2007 (P 〈 0.001). However, there was no difference in mean FsT between mature (59 years since fire) and intermediate aged (32 years since fire) scars that were both subjected to fire in 2007 (P = 0.226). Furthermore, there was no difference in mean FsT between mature (59 years since fire) and young scars (16 years since fire) that were both subjected to fire in 2007 (P = 0.186). There was an increase in FsT with time since fire for the chronosequence 0, 16 and 59 years post fire (P 〈 0.001). Our results lead us to hypothesise that the autotrophic:heterotrophic soil respiration ratio increases over post-fire successional time in boreal jack pine systems, though this should be explored in future research. The results of this study contribute to a better quantitative understanding of Fs in boreal jack pine fire scars and will facilitate meta-analyses of Fs in fire scar chronosequences.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-09-03
    Description: To fully understand the carbon (C) cycle impacts of forest fires, both C emissions during the fire and post-disturbance fluxes need to be considered. The latter are dominated by soil respiration (Rs), which is still subject to large uncertainties. This research investigates Rs in a boreal jack pine fire scar chronosequence at Sharpsand Creek, Ontario, Canada. During two field campaigns in 2006 and 2007, Rs was measured in a chronosequence of fire scars aged between 0 and 59 years since the last fire. Mean Rs per fire scar was adjusted for soil temperature (Ts) and soil moisture (Ms) (denoted RST,M). RST,M ranged from 0.56 μmol CO2/m2/s (32 years post fire) to 8.18 μmol CO2/m2/s (58 years post fire). The coefficient of variation (CV) of RST,M ranged from 20% (16 years post fire) to 56% (58 years post fire). Across the field site, there was a statistically highly significant exponential relationship between Rs adjusted for soil organic carbon (Cs) and Ts (P0.1) difference could be detected between recently burned (4 to 8 days post fire) and unburned young forest. There were significant differences in RST,M between recently burned (4 to 8 days post fire) scar age categories that differed in their burn history, with between-fire intervals of 32 vs. 16 years (P
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...