ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-24
    Description: The assessment of riverine fluxes of carbon, nutrients, and metals in surface waters of permafrost-affected regions is crucially important for constraining adequate models of ecosystem functioning under various climate change scenarios. In this regard, the largest permafrost peatland territory on the Earth, the Western Siberian Lowland (WSL) presents a unique opportunity of studying possible future changes in biogeochemical cycles because it lies within a south–north gradient of climate, vegetation, and permafrost that ranges from the permafrost-free boreal to the Arctic tundra with continuous permafrost at otherwise similar relief and bedrocks. By applying a “substituting space for time” scenario, the WSL south-north gradient may serve as a model for future changes due to permafrost boundary shift and climate warming. Here we measured export fluxes (yields) of dissolved organic carbon (DOC), major cations, macro- and micro- nutrients, and trace elements in 32 rivers, draining the WSL across a latitudinal transect from the permafrost-free to the continuous permafrost zone. We aimed at quantifying the impact of climate warming (water temperature rise and permafrost boundary shift) on DOC, nutrient and metal in rivers using a “substituting space for time” approach. We demonstrate that, contrary to common expectations, the climate warming and permafrost thaw in the WSL will likely decrease the riverine export of organic C and many elements. Based on the latitudinal pattern of riverine export, in the case of a northward shift in the permafrost zones, the DOC, P, N, Si, Fe, divalent heavy metals, trivalent and tetravalent hydrolysates are likely to decrease the yields by a factor of 2–5. The DIC, Ca, SO4, Sr, Ba, Mo, and U are likely to increase their yields by a factor of 2–3. Moreover, B, Li, K, Rb, Cs, N-NO3, Mg, Zn, As, Sb, Rb, and Cs may be weakly affected by the permafrost boundary migration (change of yield by a factor of 1.5 to 2.0). We conclude that modeling of C and element cycle in the Arctic and subarctic should be region-specific and that neglecting huge areas of permafrost peatlands might produce sizeable bias in our predictions of climate change impact.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-18
    Description: Natural and anthropogenic mercury (Hg) emissions are sequestered in terrestrial soils over short, annual to long, millennial timescales before Hg mobilization and run-off impact wetland and coastal ocean ecosystems. Recent studies have used Hg-to-carbon (C) ratios (RHgC's) measured in Alaskan permafrost mineral and peat soils together with a northern circumpolar permafrost soil carbon inventory to estimate that these soils contain large amounts of Hg (between 184 and 755 Gg) in the upper 1 m. However, measurements of RHgC on Siberian permafrost peatlands are largely missing, leaving the size of the estimated northern soil Hg budget and its fate under Arctic warming scenarios uncertain. Here we present Hg and carbon data for six peat cores down to mineral horizons at 1.5–4 m depth, across a 1700 km latitudinal (56 to 67∘ N) permafrost gradient in the Western Siberian Lowland (WSL). Mercury concentrations increase from south to north in all soil horizons, reflecting a higher stability of sequestered Hg with respect to re-emission. The RHgC in the WSL peat horizons decreases with depth, from 0.38 Gg Pg−1 in the active layer to 0.23 Gg Pg−1 in continuously frozen peat of the WSL. We estimate the Hg pool (0–1 m) in the permafrost-affected part of the WSL peatlands to be 9.3±2.7 Gg. We review and estimate pan-Arctic organic and mineral soil RHgC to be 0.19 and 0.63 Gg Pg−1, respectively, and use a soil carbon budget to revise the pan-Arctic permafrost soil Hg pool to be 72 Gg (39–91 Gg; interquartile range, IQR) in the upper 30 cm, 240 Gg (110–336 Gg) in the upper 1 m, and 597 Gg (384–750 Gg) in the upper 3 m. Using the same RHgC approach, we revise the upper 30 cm of the global soil Hg pool to contain 1086 Gg of Hg (852–1265 Gg, IQR), of which 7 % (72 Gg) resides in northern permafrost soils. Additional soil and river studies in eastern and northern Siberia are needed to lower the uncertainty on these estimates and assess the timing of Hg release to the atmosphere and rivers.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2016-09-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-07-27
    Description: Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-19
    Description: In contrast to numerous studies on the dynamics of dissolved (0.45 µm) matter (RSM) in these regions. In order to test the effect of climate, permafrost and physio-geographical landscape parameters (bogs, forest and lake coverage of the watershed) on RSM and particulate C, N and P concentrations in river water, we sampled 33 small and medium-sized rivers (10–100 000 km2 watershed) along a 1700 km N–S transect including both permafrost-affected and permafrost-free zones of the Western Siberian Lowland (WSL). The concentrations of C and N in RSM decreased with the increase in river watershed size, illustrating (i) the importance of organic debris in small rivers which drain peatlands and (ii) the role of mineral matter from bank abrasion in larger rivers. The presence of lakes in the watershed increased C and N but decreased P concentrations in the RSM. The C:N ratio in the RSM reflected the source from the deep soil horizon rather than surface soil horizon, similar to that of other Arctic rivers. This suggests the export of peat and mineral particles through suprapermafrost flow occurring at the base of the active layer. There was a maximum of both particulate C and N concentrations and export fluxes at the beginning of permafrost appearance, in the sporadic and discontinuous zone (62–64∘ N). This presumably reflected the organic matter mobilization from newly thawed organic horizons in soils at the active latitudinal thawing front. The results suggest that a northward shift of permafrost boundaries and an increase in active layer thickness may increase particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2, while P export may remain unchanged. In contrast, within a long-term climate warming scenario, the disappearance of permafrost in the north, the drainage of lakes and transformation of bogs to forest may decrease C and N concentrations in RSM by 2 to 3 times.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-09
    Description: The formation of Mg-rich carbonates in continental lakes throughout the world is highly relevant to irreversible CO2 sequestration and the reconstruction of paleo-sedimentary environments. Here, preliminary results on Mg-rich carbonate formation at the coastal zone of Lake Vtoroe Zasechnoe, representing the Setovskiye group of water bodies located in the forest-steppe zone of Southwest Western Siberia, are reported. The Setovskiye lakes are Cl−–Na+–(SO42−) type, alkaline, and medium or highly saline. The results of microscopic and mineralogical studies of microbialites from shallow coastal waters of Lake Vtoroe Zasechnoe demonstrated that Mg in the studied lake was precipitated in the form of hydrous Mg carbonates, which occur as radially divergent crystals that form clusters in a dumbbell or star shape. It is possible that hydrous Mg carbonate forms due to the mineralization of exopolymeric substances (EPS) around bacterial cells within the algal mats. Therefore, the Vtoroe Zasechnoe Lake represents a rare case of Mg-carbonates formation under contemporary lacustrine conditions. Further research on this, as well as other lakes of Setovskiye group, is needed for a better understanding of the possible role of biomineralization and abiotic mechanisms, such as winter freezing and solute concentration, in the formation of authigenic Mg carbonate in modern aquatic environments.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-02
    Description: Mobilization of dissolved organic carbon (DOC) and related trace elements (TE) from the frozen peat to surface waters in the permafrost zone is one the major consequence of on-going permafrost thaw and active layer thickness (ALT) rise in high latitude regions. The interstitial soil solutions are efficient tracers of on-going bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, DIC and 40 major and TE in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease of the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase of the permafrost coverage, decrease in the annual temperature and ALT, the DOC and many major and trace element did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2° N to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from continuous permafrost zone was equal or higher than that in sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, REEs, Zr, Hf, Th) elements exhibited an increasing, not decreasing northward concentration trend. We hypothesize that the effect of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REE, Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat pore-water enrichments in DOC and other solutes. A two-degree northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, SUVA, Ca, Mg, Fe and Sr will not exceed 20 % of their actual values. The projected increase of ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime are unlikely to modify chemical composition of peat pore water fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-01
    Print ISSN: 0269-7491
    Electronic ISSN: 1873-6424
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-30
    Description: Towards a better understanding of trace element (TE) transport in permafrost-affected Earth surface environments, we sampled  ∼  60 large and small rivers ( forest. The lakes decreased export of Mn and Co in summer and Ni, Cu, and Rb in spring, presumably due to biotic processes. The lakes enriched the rivers in insoluble lithogenic elements in summer and winter, likely due to TE mobilization from unfrozen mineral sediments. The rank of environmental factors on TE concentration in western Siberian rivers was latitude (three permafrost zones) 〉 season 〉 watershed size. The effect of the latitude was minimal in spring for most TEs but highly visible for Sr, Mo, Sb and U. The main factors controlling the shift of river feeding from surface and subsurface flow to deep underground flow in the permafrost-bearing zone were the depth of the active (unfrozen) seasonal layer and its position in organic or mineral horizons of the soil profile. In the permafrost-free zone, the relative role of carbonate mineral-bearing base rock feeding versus bog water feeding determined the pattern of TE concentration and fluxes in rivers of various sizes as a function of season. Comparison of obtained TE fluxes in WSL rivers with those of other subarctic rivers demonstrated reasonable agreement for most TEs; the lithology of base rocks was the major factor controlling the magnitude of TE fluxes. Climate change in western Siberia and permafrost boundary migration will essentially affect the elements controlled by underground water feeding (DIC, alkaline earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids. Plant litter-originated divalent metals present as organic complexes may be retained via adsorption on mineral horizon. However, due to various counterbalanced processes controlling element source and sinks in plant–peat–mineral soil–river systems, the overall impact of the permafrost thaw on TE export from the land to the ocean may be smaller than that foreseen with merely active layer thickening and permafrost boundary shift.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...