ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-11-14
    Description: Over the decades, visual inspection has been adopted as a means to monitor infrastructure health. While visual inspection provides insights on a bridge’s condition, it has been generally agreed that it is insufficient and inefficient. This has called for the creation of autonomous, robust, continuous, and quantitative structural health monitoring (SHM) systems to detect potential deficiencies in an early stage, and monitor future condition. Various methods have been explored that associate changes in condition with changes in the structure’s vibration characteristics. These methods have been mostly tested on laboratory specimens experiencing simulated damage. There is need for extending validation of these SHM methods on in-situ structures experiencing real damage under operational and environmental conditions. This paper summarizes a full-scale experiment exploring bridge damage detection effectiveness under variable traffic loads. Three different types of damage were introduced into a full-scale, bridge deck mock-up. These included crash-induced bridge barrier damage, controlled barrier damage, and damage to the deck slab. At the end of each introduced damage case, the bridge’s response to the multiple passages was recorded using specific vehicles specifications. Data was extracted and analyzed to identify damage using principal component analysis (PCA) and independent component analysis (ICA) as damage-sensitive features. The extracted damage features were thereafter used as input for unsupervised learning (novelty detection). One interesting observation was how PCA revealed possibly significant damage after a crash, which under visual inspection appeared to be minor. Novelty detection using PCA as its damage feature was shown to provide robust damage detection irrespective of load, speed variation, and signal noise levels.
    Electronic ISSN: 2504-3900
    Topics: Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-15
    Description: This study presents a new scheme for autonomous health monitoring of railroad infrastructure using a continuous stream of structural health monitoring data. The study utilized measured strains from an optimized sensor set deployed on a double track, steel, railway, truss bridge located in central Nebraska. The most common failure mode for the superstructure of this structural system is the stringer-to-floor beam connection failure, which was the focus of this study. However, the proposed methodology could be used to assess the condition of a wide range of structural elements and details. The damage feature adopted in this framework was the variations of Proper Orthogonal Modes (POMs) of the measured structural response. To automatically detect the occurrence, location, and intensity of deficiencies from the POMs, Artificial Neural Networks (ANN) were adopted. POM variations, which are traditionally input (load) dependent, were ultimately utilized as damage indicators. To alleviate the variability of POMs due to non-stationarity of the train loads, a preset windowing of measured output was completed in conjunction with automated peak-picking. Furthermore, input variability necessitated implementing ANNs to help decouple POM changes due to load variations from those caused by deficiencies, changes that would render the proposed framework input independent; a significant advancement. Damage “scenarios” were artificially introduced into select output (strain) datasets recorded while monitoring train passes across the selected bridge. This information, in turn, was used to train ANNs using MATLAB’s Neural Net Toolbox. Trained ANNs were tested against monitored loading events and artificial damage scenarios. Applicability of the proposed, output-only framework was investigated via studies of the bridge under operational conditions. To account for the effects of potential deficiencies at the stringer-to-floor beam connections, measured signal amplitudes were artificially decreased at select locations. Finally, to validate the applicability of the proposed method using low-cost measurement devices, the measured signals were corrupted by high levels of white, Gaussian noises featuring spatial correlations. It was concluded that the proposed framework could successfully identify 20 damage indices, which were artificially imposed on measured signals under operational conditions.
    Electronic ISSN: 2504-3900
    Topics: Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-01
    Description: A three-dimensional (3D) modeling approach to investigate nonlinear seismic response of a curved and skewed bridge system is proposed. The approach is applied to a three-span curved and skewed steel girder bridge in the United States. The superstructure is modeled using 3D frame elements for the girders, truss elements for the cross-frames, and equivalent frame elements to represent the deck. Spherical bearings are modeled with zero-length elements coupled with hysteretic material models. Nonlinear seismic responses of the bearings subjected to actual ground motions are examined in various directions. Findings indicate that the bearings experience moderate damage for most loading scenarios based on FEMA seismic performance criteria. Further, the bearing responses are different for the loading scenarios because of seismic effects caused by interactions between excitation direction and radius of curvature.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...