ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2021-11-10
    Description: Knowledge of the internal state of rock is key to anticipate its rheological response and susceptibility to external factors. Time-dependent failure in rock is controlled by internal state changes, like damage accumulation or strength degradation. But assessing internal states and changes thereof, nondestructively and independent of external forcing is not straightforward. Residual strains, measured with neutron diffraction techniques are used as a proxy for the internal state in material sciences. We investigated its potential for progressive rock failure by measuring residual strain states of an untested and three mechanically and chemomechanically pretested Carrara marble samples. We collected neutron diffraction data for three crystal lattice planes {10̅14}, {0006}, and {11̅20}. Measurements showed an initial overall contractional spatially homogeneous residual unit cell volume strain state of about −400 μstrain, though magnitudes were strongly partitioned among measured crystal lattice planes. However, they are equal within the spatial orientations of the intact sample. For the pretested samples, the induction and relaxation of strains varied spatially with the pretesting stress field and environmental conditions. The vertical extent of superposition of the initial residual strain state was greatest in wet samples, the magnitude of induced extensional strain highest in the dry sample. This indicates chemomechanically enhanced subcritical crack growth with concomitant residual strain relaxation as well as the mitigation of extensional strain built up by the presence of water during pretesting. Our experiments show that residual strain has a significant potential to provide insights into past and actual internal states to anticipate progressive rock failure.
    Keywords: 552.06
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-01
    Description: Our concept of progressive rock slope failures is on the one hand embedded in aggregated subcritical crack growth mechanisms and on the other sensitive to environmental conditions, especially water. To anticipate failure dynamics in rock slopes, it is a key requirement to reveal the influence of water on subcritical crack growth mechanisms and material properties. We present experimental data on the time-dependent deformation of an exemplary rock, Carrara marble. We employed inverted single-edge notch bending creep tests on large Carrara marble samples to mimic an open joint system with controlled water supply. Constant stress was applied in two steps approaching 22–85% of a previously determined critical baseline stress. Introducing calcite-saturated water to subcritical stressed samples caused an immediate increase in strain by up to an order of magnitude. Time-dependent accumulation of inelastic damage at the notch tip occurred in wet and dry samples at all load levels. Subcritical crack growth and the evolution of localized intergranular fractures are enhanced if water is present and readily approach tertiary creep when loaded above 80%. The immediate strain response is attributed to the reduction of surface energy and diffusion of the water into the rock. The resultant more compliant and weaker rheology can even turn the subcritical stress into a critical state. Over time, subcritical and chemically enhanced mechanisms progressively alter especially grain boundaries, which become the key controls of progressive failure in Carrara marble. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-01
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-01
    Print ISSN: 1365-1609
    Electronic ISSN: 1873-4545
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-14
    Description: Knowledge of the internal state of rock is key to anticipate its rheological response and susceptibility to external factors. Time‐dependent failure in rock is controlled by internal state changes, like damage accumulation or strength degradation. But assessing internal states and changes thereof, non‐destructively and independent of external forcing is not straight forward. Residual strains, measured with neutron diffraction techniques are used as a proxy for the internal state in material sciences. We investigated its potential for progressive rock failure by measuring residual strain states of an untested and three mechanically and chemo‐mechanically pretested Carrara marble samples. We collected neutron diffraction data for three crystal lattice planes {10̅14}, {0006}, and {11̅20}. Measurements showed an initial overall contractional spatially homogeneous residual unit cell volume strain state of about ‐400μstrain, though magnitudes were strongly partitioned among measured crystal lattice planes. However, they are equal within the spatial orientations of the intact sample. For the pretested samples, the induction and relaxation of strains varied spatially with the pretesting stress field and environmental conditions. The vertical extent of superposition of the initial residual strain state was greatest in wet samples, the magnitude of induced extensional strain highest in the dry sample. This indicates chemo‐mechanically enhanced subcritical crack growth with concomitant residual strain relaxation as well as the mitigation of extensional strain built up by the presence of water during pretesting. Our experiments show, that residual strain has a significant potential to provide insights into past and actual internal states to anticipate progressive rock failure.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...