ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2011-08-23
    Description: The Clouds and the Earth's Radiant Energy System (CERES) spacecraft sensors are designed to measure broadband earth-reflected solar shortwave (0.3-5 microns) and earth-emitted longwave (5- 〉 100 microns) radiances at the top of the atmosphere as part of the Mission to Planet Earth program. The scanning thermistor bolometer sensors respond to radiances in the broadband shortwave (0.3-5 microns) and total-wave (0.3- 〉 100 microns) spectral regions, as well as to radiances in the narrowband water vapor window (8-12 microns) region. 'ne sensors are designed to operate for a minimum of 5 years aboard the NASA Tropical Rainfall Measuring Mission and Earth Observing System AM-1 spacecraft platforms that are scheduled for launches in 1997 and 1998, respectively. The flight sensors and the in-flight calibration systems will be calibrated in a vacuum ground facility using reference radiance sources, tied to the international temperature scale of 1990. The calibrations will be used to derive sensor gains, offsets, spectral responses, and point spread functions within and outside of the field of view. The shortwave, total-wave, and window ground calibration accuracy requirements (1 sigma) are +/-0.8, +/-0.6, and +/-0.3 W /sq m/sr, respectively, while the corresponding measurement precisions are +/-O.5% and +/-1.0% for the broadband longwave and shortwave radiances, respectively. The CERES sensors, in-flight calibration systems, and ground calibration instrumentation are described along with outlines of the preflight and in-flight calibration approaches.
    Keywords: Environment Pollution
    Type: Journal of Atmospheric and Oceanic Technology; Volume 13; 300-313
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This work studies the potential of monitoring changes in tropical extreme rainfall events such as tropical storms from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 gigahertz O2 absorption band to remotely measure sea surface air pressure. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 5 millibars (approximately 1 millibar) under all weather conditions. With these sea level pressure measurements, the forecasts, analyses and understanding of these extreme events in both short and long time scales can be improved. Severe weathers, especially hurricanes, are listed as one of core areas that need improved observations and predictions in WCRP (World Climate Research Program) and NASA Decadal Survey (DS) and have major impacts on public safety and national security through disaster mitigation. Since the development of the DiBAR concept about a decade ago, our team has made substantial progress in advancing the concept. Our feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. We have developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with our instrumentation goals. Observational system simulation experiments for space DiBAR performance show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on tropical extreme rainfall weather and climate conditions.
    Keywords: Instrumentation and Photography; Meteorology and Climatology; Oceanography
    Type: NF1676L-22678 , Water and Energy Cycles in the Tropics; Nov 17, 2015 - Nov 19, 2015; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...