ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The Lunar Reconnaissance Orbiter (LRO) is scheduled to launch in 2008 as the first mission under NASA's Vision for Space Exploration. Following several weeks in a quasi-frozen commissioning orbit, LRO will fly in a 50 km mean altitude lunar polar orbit. During the one year mission duration, the orbital dynamics of a low lunar orbit force LRO to perform periodic sets of stationkeeping maneuvers. This paper explores the characteristics of low lunar orbits and explains how the LRO stationkeeping plan is designed to accommodate the dynamics in such an orbit. The stationkeeping algorithm used for LRO must meet five mission constraints. These five constraints are to maintain ground station contact during maneuvers, to control the altitude variation of the orbit, to distribute periselene equally between northern and southern hemispheres, to match eccentricity at the beginning and the end of the sidereal period, and to minimize stationkeeping deltaV. This paper addresses how the maneuver plan for LRO is designed to meet all of the above constraints.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Proceedings of the 20th International Symposium on Space Flight Dynamics; NASA/CP-2007-214158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The GSFC Flight Dynamics Facility (FDF) is responsible for daily and post maneuver orbit determination for the Tracking and Data Relay Satellite System (TDRSS). The most stringent requirement for this orbit determination is 75 meters total position accuracy (3-sigma) predicted over one day for Terra's onboard navigation system. To maintain an accurate solution onboard Terra, a solution is generated and provided by the FDF Four hours after a TDRS maneuver. A number of factors present challenges to this support, such as maneuver prediction uncertainty and potentially unreliable tracking from User satellities. Reliable support is provided by comparing an extended Kalman Filter (estimated using ODTK) against a Batch Least Squares system (estimated using GTDS).
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN20229 , AAS/AIAA Space Flight Mechanics Meeting; Jan 11, 2015 - Jan 15, 2015; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN60429 , SPIE Optics + Photonics 2018; Aug 19, 2018 - Aug 23, 2018; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: As part of the geolocation accuracy assessment of lightning flashes detected by the Geostationary Lightning Mapper (GLM) on the GOES-16 and GOES-17 satellites (Geostationary Operational Environmental Satellite), two satellite laser ranging stations employed laser beacon systems to generate transient light pulses that simulate natural lightning around 777.4 nm to validate the pre-launch spec of 5 km. The pulse width, repetition rate, wavelength, and power of the laser-pulses were configured to produce sufficient instrument response to be detected as synthetic lightning events by the GLM instrument. During the testing period from April 2017 to January 2018, the laser systems illuminated the GOES-16 satellite to observe diurnal variation of the GLM system response, with particular emphasis on geolocation accuracy. The final GOES-16 laser beacon tests, which used the latest updates of the geolocation algorithms implemented by the GOES-R Ground Segment, showed the offsets between the GLM geolocated location and the known laser locations were within 5 km.
    Keywords: Geophysics
    Type: MSFC-E-DAA-TN59475 , SPIE Optics + Photonics 2018; Aug 19, 2018 - Aug 23, 2018; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-09
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN73612 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This viewgraph presentation is an overview of the Lunar Reconnaissance Orbiter (LRO), with emphasis on the navigation and plans for the mission. The objective of the LRO mission is to conduct investigations that will be specifically target to prepare for and support future human exploration of the Moon. There is a review of the scientific instruments on board the LRO and an overview of the phases of the planned trajectory.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar Reconnaissance Orbiter (LRO) Navigation Overview; May 21, 2008; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Lunar Reconnaissance Orbiter (LRO) is scheduled to launch in 2008 as the first mission under NASA's Vision for Space Exploration. Follo wing several weeks in a quasi-frozen commissioning orbit, LRO will fl y in a 50 km mean altitude lunar polar orbit. During the one year mis sion duration, the orbital dynamics of a low lunar orbit force LRO to perform periodic sets of stationkeeping maneuvers. This paper explor es the characteristics of low lunar orbits and explains how the LRO s tationkeeping plan is designed to accommodate the dynamics in such an orbit. The stationkeeping algorithm used for LRO must meet five miss ion constraints. These five constraints are to maintain ground statio n contact during maneuvers, to control the altitude variation of the orbit, to distribute periselene equally between northern and southern hemispheres, to match eccentricity at the beginning and the end of the sidereal period, and to minimize stationkeeping (Delta)V. This pape r addresses how the maneuver plan for LRO is designed to meet all of the above constraints.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 20th International Symposium on Space Flight Dynamics; Sep 24, 2007 - Sep 28, 2007; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...