ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15168 | 403 | 2014-05-29 07:25:58 | 15168 | United States National Marine Fisheries Service
    Publication Date: 2021-07-04
    Description: Lengths and ages of sword-fish (Xiphias gladius) estimated from increments on otoliths of larvae collected in the Caribbean Sea, Florida Straits, and off the southeastern United States, indicated two growth phases. Larvae complete yolk and oil globule absorption 5 to 6 days after hatching (DAH). Larvae 〈13 mm preserved standard length (PSL) grow slowly (~0.3 mm/d); larvae from 13 to 115 mm PSL grow rapidly (~6 mm/d). The acceleration in growth rate at 13 days follows an abrupt (within 3 days) change in diet, and in jaw and alimentary canal structure. The diet of swordfish larvae is limited. Larvae 〈8 mm PSL from the Caribbean, Gulf of Mexico, and off the southeastern United States eat exclusively copepods, primarily of one genus, Corycaeus. Larvae 9 to 11 mm eat copepods and chaetognaths; larvae 〉11 mm eat exclusively neustonic fish larvae. This diet indicates that young larvae 〈11 mm occupy the near-surface pelagia, whereas, older and longer larvae are neustonic. Spawning dates for larvae collected in various regions of the western North Atlantic, along with the abundance and spatial distribution of the youngest larvae, indicate that spawning peaks in three seasons and in five regions. Swordfish spawn in the Caribbean Sea, or possibly to the east, in winter, and in the western Gulf of Mexico in spring. Elsewhere swordfish spawn year-round, but spawning peaks in the spring in the north-central Gulf of Mexico, in the summer off southern Florida, and in the spring and early summer off the southeastern United States. The western Gulf Stream frontal zone is the focus of spawning off the southeastern coast of the United States, whereas spawning in the Gulf of Mexico seems to be focused in the vicinity of the Gulf Loop Current. Larvae may use the Gulf of Mexico and the outer continental shelf off the east coast of the United States as nursery areas. Some larvae may be transported northward, but trans-Atlantic transport of larvae is unlikely.
    Keywords: Biology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 778-789
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15235 | 403 | 2014-06-01 18:54:42 | 15235 | United States National Marine Fisheries Service
    Publication Date: 2021-07-05
    Description: Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries.
    Keywords: Biology ; Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 609-623
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-01
    Description: Life history aspects of larval and, mainly, juvenile spotted seatrout (Cynoscion nebulosus) were studied in Florida Bay, Everglades National Park, Florida. Collections were made in 1994−97, although the majority of juveniles were collected in 1995. The main objective was to obtain life history data to eventually develop a spatially explicit model and provide baseline data to understand how Everglades restoration plans (i.e. increased freshwater flows) could influence spotted seatrout vital rates. Growth of larvae and juveniles (〈80 mm SL) was best described by the equation loge standard length = –1.31 + 1.2162 (loge age). Growth in length of juveniles (12–80 mm SL) was best described by the equation standard length = –7.50 + 0.8417 (age). Growth in wet weight of juveniles (15–69 mm SL) was best described by the equation loge wet-weight = –4.44 + 0.0748 (age). There were no significant differences in juvenile growth in length of spotted seatrout in 1995 between three geographical subdivisions of Florida Bay: central, western, and waters adjacent to the Gulf of Mexico. We found a significant difference in wet-weight for one of six cohorts categorized by month of hatchdate in 1995, and a significant difference in length for another cohort. Juveniles (i.e. survivors) used to calculate weekly hatchdate distributions during 1995 had estimated spawning times that were cyclical and protracted, and there was no correlation between spawning and moon phase. Temperature influenced otolith increment widths during certain growth periods in 1995. There was no evidence of a relationship between otolith growth rate and temperature for the first 21 increments. For increments 22–60, otolith growth rates decreased with increasing age and the extent of the decrease depended strongly in a quadratic fashion on the temperature to which the fish was exposed. For temperatures at the lower and higher range, increment growth rates were highest. We suggest that this quadratic relationship might be influenced by an environmental factor other than temperature. There was insufficient information to obtain reliable inferences on the relationship of increment growth rate to salinity.
    Keywords: Biology ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 142-155
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Fishery Bulletin 106 (2008): 183-193.
    Description: The identification of sea bass (Centropristis) larvae to species is difficult because of similar morphological characters, spawning times, and overlapping species ranges. Black sea bass (Centropristis striata) is an important fishery species and is currently considered to be overfished south of Cape Hatteras, North Carolina. We describe methods for identifying three species of sea bass larvae using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) assays based on species-specific amplification of rDNA internal transcribed spacer reg ions. The assays were tested against DNA of ten other cooccurring reef fish species to ensure the assay’s specificity. Centropristis larvae were collected on three cruises during cross-shelf transects and were used to validate the assays. Seventysix Centropristis larvae were assayed and 69 (91%) were identified successfully. DNA was not amplified from 5% of the larvae and identification was inconclusive for 3% of the larvae. These assays can be used to identify sea bass eggs and larvae and will help to assess spawning locations, spawning times, and larval dispersal.
    Description: Collection of larvae at sea was supported by funding from the National Science Foundation through OCE 9876565 to C. Jones, S. Thorrold, A. Valle-Levinson, and J. Hare. Additional funding for this project was provided by Office of National Marine Sanctuaries and by Grays Reef National Marine Sanctuary.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-12
    Description: The identification of sea bass (Centropristis) larvae to species is difficult because of similar morphological characters, spawning times, and overlapping species ranges. Black sea bass (Centropristis striata) is an important fishery species and is currently considered to be overfished south of Cape Hatteras, North Carolina. We describe methods for identifying three species of sea bass larvae using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) assays based on species-specific amplification of rDNA internal transcribed spacer regions. The assays were tested against DNA of ten other co-occurring reef fish species to ensure the assay's specificity. Centropristis larvae were collected on three cruises during cross-shelf transects and were used to validate the assays. Seventy-six Centropristis larva were assayed and 69 (91%) were identified successfully. DNA was not amplified from 5% of the larvae and identification was inconclusive for 3% of the larvae. Those assays can be used to identify sea bass eggs and larvae and will help to assess spawning locations, spawning times, and larval dispersal.
    Keywords: Ecology ; Fisheries ; Chemistry ; sea basses ; Centropristis spp. ; genetic identification
    Repository Name: AquaDocs
    Type: article
    Format: application/pdf
    Format: application/pdf
    Format: 183-193
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...