ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-23
    Description: Transcriptional regulation of the galactose-metabolizing genes in Saccharomyces cerevisiae depends on three core proteins: Gal4p, the transcriptional activator that binds to upstream activating DNA sequences (UAS(GAL)); Gal80p, a repressor that binds to the carboxyl terminus of Gal4p and inhibits transcription; and Gal3p, a cytoplasmic transducer that, upon binding galactose and adenosine 5'-triphosphate, relieves Gal80p repression. The current model of induction relies on Gal3p sequestering Gal80p in the cytoplasm. However, the rapid induction of this system implies that there is a missing factor. Our structure of Gal80p in complex with a peptide from the carboxyl-terminal activation domain of Gal4p reveals the existence of a dinucleotide that mediates the interaction between the two. Biochemical and in vivo experiments suggests that nicotinamide adenine dinucleotide phosphate (NADP) plays a key role in the initial induction event.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726985/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726985/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, P Rajesh -- Yu, Yao -- Sternglanz, Rolf -- Johnston, Stephen Albert -- Joshua-Tor, Leemor -- GM074075/GM/NIGMS NIH HHS/ -- GM55641/GM/NIGMS NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 GM074075/GM/NIGMS NIH HHS/ -- R01 GM074075-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Feb 22;319(5866):1090-2. doi: 10.1126/science.1151903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18292341" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallography, X-Ray ; DNA-Binding Proteins ; Dimerization ; Galactokinase/metabolism ; Galactose/metabolism ; Gene Expression Regulation, Fungal ; Models, Molecular ; NADP/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/*chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Transcription Factors/*chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-07-31
    Description: Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jidong -- Carmell, Michelle A -- Rivas, Fabiola V -- Marsden, Carolyn G -- Thomson, J Michael -- Song, Ji-Joon -- Hammond, Scott M -- Joshua-Tor, Leemor -- Hannon, Gregory J -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1437-41. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284456" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Catalysis ; Cell Line ; Cells, Cultured ; Central Nervous System/embryology ; Embryonic and Fetal Development ; Eukaryotic Initiation Factor-2 ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization ; Mice ; MicroRNAs/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Oligonucleotide Array Sequence Analysis ; Peptide Initiation Factors/chemistry/*metabolism ; Point Mutation ; *RNA Interference ; RNA, Double-Stranded ; RNA, Messenger/*metabolism ; RNA, Small Interfering/metabolism ; RNA-Induced Silencing Complex/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-07-31
    Description: Argonaute proteins and small interfering RNAs (siRNAs) are the known signature components of the RNA interference effector complex RNA-induced silencing complex (RISC). However, the identity of "Slicer," the enzyme that cleaves the messenger RNA (mRNA) as directed by the siRNA, has not been resolved. Here, we report the crystal structure of the Argonaute protein from Pyrococcus furiosus at 2.25 angstrom resolution. The structure reveals a crescent-shaped base made up of the amino-terminal, middle, and PIWI domains. The Piwi Argonaute Zwille (PAZ) domain is held above the base by a "stalk"-like region. The PIWI domain (named for the protein piwi) is similar to ribonuclease H, with a conserved active site aspartate-aspartate-glutamate motif, strongly implicating Argonaute as "Slicer." The architecture of the molecule and the placement of the PAZ and PIWI domains define a groove for substrate binding and suggest a mechanism for siRNA-guided mRNA cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Ji-Joon -- Smith, Stephanie K -- Hannon, Gregory J -- Joshua-Tor, Leemor -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1434-7. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/*chemistry/metabolism ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrococcus furiosus/*chemistry ; *RNA Interference ; RNA, Messenger/*metabolism ; RNA, Small Interfering/*metabolism ; RNA-Induced Silencing Complex/*metabolism ; Ribonuclease H/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-15
    Description: The pluripotency factor Lin28 inhibits the biogenesis of the let-7 family of mammalian microRNAs. Lin28 is highly expressed in embryonic stem cells and has a fundamental role in regulation of development, glucose metabolism and tissue regeneration. Overexpression of Lin28 is correlated with the onset of numerous cancers, whereas let-7, a tumour suppressor, silences several human oncogenes. Lin28 binds to precursor let-7 (pre-let-7) hairpins, triggering the 3' oligo-uridylation activity of TUT4 and TUT7 (refs 10-12). The oligoU tail added to pre-let-7 serves as a decay signal, as it is rapidly degraded by Dis3l2 (refs 13, 14), a homologue of the catalytic subunit of the RNA exosome. The molecular basis of Lin28-mediated recruitment of TUT4 and TUT7 to pre-let-7 and its subsequent degradation by Dis3l2 is largely unknown. To examine the mechanism of Dis3l2 substrate recognition we determined the structure of mouse Dis3l2 in complex with an oligoU RNA to mimic the uridylated tail of pre-let-7. Three RNA-binding domains form an open funnel on one face of the catalytic domain that allows RNA to navigate a path to the active site different from that of its exosome counterpart. The resulting path reveals an extensive network of uracil-specific interactions spanning the first 12 nucleotides of an oligoU-tailed RNA. We identify three U-specificity zones that explain how Dis3l2 recognizes, binds and processes uridylated pre-let-7 in the final step of the Lin28-let-7 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192074/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192074/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faehnle, Christopher R -- Walleshauser, Jack -- Joshua-Tor, Leemor -- P30 CA045508/CA/NCI NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- T32 GM065094/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):252-6. doi: 10.1038/nature13553. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3]. ; 1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3] Watson School of Biological Science, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA [4]. ; 1] W. M. Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [2] Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA [3] Watson School of Biological Science, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA [4] Howard Hughes Medical Institute, Cold Spring Harbor, 1 Bungtown Road, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Exoribonucleases/*chemistry/*metabolism ; Exosome Multienzyme Ribonuclease Complex/chemistry ; Mice ; MicroRNAs/chemistry/genetics/*metabolism ; Models, Molecular ; Oligoribonucleotides/chemistry/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Schizosaccharomyces pombe Proteins/chemistry ; Substrate Specificity ; Uracil Nucleotides/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-16
    Description: PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism to provide essential protection for germ-cell genomes against the activity of mobile genetic elements. piRNA populations comprise a molecular definition of transposons, which permits them to distinguish transposons from host genes and selectively silence them. piRNAs can be generated in two distinct ways, forming either primary or secondary piRNAs. Primary piRNAs come from discrete genomic loci, termed piRNA clusters, and seem to be derived from long, single-stranded precursors. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are probably formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner. Secondary piRNAs arise during the adaptive 'ping-pong' cycle, with their 5' termini being formed by the activity of PIWIs themselves. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Drosophila melanogaster Zucchini, is a member of the phospholipase-D family of phosphodiesterases, which includes both phospholipases and nucleases. Here we produced a dimeric, soluble fragment of the mouse Zucchini homologue (mZuc; also known as PLD6) and show that it possesses single-strand-specific nuclease activity. A crystal structure of mZuc at 1.75 A resolution indicates greater architectural similarity to phospholipase-D family nucleases than to phospholipases. Together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ipsaro, Jonathan J -- Haase, Astrid D -- Knott, Simon R -- Joshua-Tor, Leemor -- Hannon, Gregory J -- CA045508/CA/NCI NIH HHS/ -- F32 GM097888/GM/NIGMS NIH HHS/ -- F32GM97888/GM/NIGMS NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 GM062534/GM/NIGMS NIH HHS/ -- R01GM062534/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Nov 8;491(7423):279-83. doi: 10.1038/nature11502. Epub 2012 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23064227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/chemistry/metabolism ; Endoribonucleases/chemistry/metabolism ; Mice ; Mitochondrial Proteins/*chemistry/*metabolism ; Models, Molecular ; Phospholipase D/*chemistry/*metabolism ; Protein Conformation ; Protein Multimerization ; RNA, Small Interfering/biosynthesis/chemistry/genetics/*metabolism ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-08-26
    Description: Small interfering RNA (siRNA) guides dimethylation of histone H3 lysine-9 (H3K9me2) via the Argonaute and RNA-dependent RNA polymerase complexes, as well as base-pairing with either RNA or DNA. We show that Argonaute requires the conserved aspartate-aspartate-histidine motif for heterochromatic silencing and for ribonuclease H-like cleavage (slicing) of target messages complementary to siRNA. In the fission yeast Schizosaccharomyces pombe, heterochromatic repeats are transcribed by polymerase II. We show that H3K9me2 spreads into silent reporter genes when they are embedded within these transcripts and that spreading requires read-through transcription, as well as slicing by Argonaute. Thus, siRNA guides histone modification by basepairing interactions with RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irvine, Danielle V -- Zaratiegui, Mikel -- Tolia, Niraj H -- Goto, Derek B -- Chitwood, Daniel H -- Vaughn, Matthew W -- Joshua-Tor, Leemor -- Martienssen, Robert A -- R01 GM076396/GM/NIGMS NIH HHS/ -- R01 GM076396-01A1/GM/NIGMS NIH HHS/ -- R01-GM067014/GM/NIGMS NIH HHS/ -- R01-GM072659/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931764" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Argonaute Proteins ; Base Pairing ; Genes, Reporter ; Heterochromatin/genetics/*metabolism ; Histones/metabolism ; *RNA Interference ; RNA, Fungal/*metabolism ; RNA, Messenger/metabolism ; RNA, Small Interfering/*metabolism ; RNA-Binding Proteins ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces/*genetics/metabolism ; Schizosaccharomyces pombe Proteins/chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-08-18
    Description: Bleomycin hydrolase is a cysteine protease that hydrolyzes the anticancer drug bleomycin. The homolog in yeast, Gal6, has recently been identified and found to bind DNA and to act as a repressor in the Gal4 regulatory system. The crystal structure of Gal6 at 2.2 A resolution reveals a hexameric structure with a prominent central channel. The papain-like active sites are situated within the central channel, in a manner resembling the organization of active sites in the proteasome. The Gal6 channel is lined with 60 lysine residues from the six subunits, suggesting a role in DNA binding. The carboxyl-terminal arm of Gal6 extends into the active site cleft and may serve a regulatory function. Rather than each residing in distinct, separable domains, the protease and DNA-binding activities appear structurally intertwined in the hexamer, implying a coupling of these two activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joshua-Tor, L -- Xu, H E -- Johnston, S A -- Rees, D C -- GM40700/GM/NIGMS NIH HHS/ -- GM45162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Aug 18;269(5226):945-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Divison of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638617" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Cysteine Endopeptidases/*chemistry/metabolism ; DNA/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Current Opinion in Structural Biology 3 (1993), S. 323-335 
    ISSN: 0959-440X
    Keywords: [abr] A'; 2-aminoadenine ; [abr] Br^5C; 5-bromocytosine ; [abr] HTP; high twist profile ; [abr] ITP; intermediate twist profile ; [abr] LTP; low twist profile ; [abr] NDB; Nucleic Acid Database ; [abr] O8A; 8-oxoadenine ; [abr] PDB; Protein Data Bank ; [abr] R; purine ; [abr] VTP; variable twist profile ; [abr] Y; pyrimidine ; [abr] araC; arabinosylcytosine ; [abr] e^6G; O6-ethyl guanine ; [abr] m^6G; O6-methyi guanine
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Current Opinion in Structural Biology 3 (1993), S. 323-335 
    ISSN: 0959-440X
    Keywords: [abr] A'; 2-aminoadenine ; [abr] Br^5C; 5-bromocytosine ; [abr] HTP; high twist profile ; [abr] ITP; intermediate twist profile ; [abr] LTP; low twist profile ; [abr] NDB; Nucleic Acid Database ; [abr] O8A; 8-oxoadenine ; [abr] PDB; Protein Data Bank ; [abr] R; purine ; [abr] VTP; variable twist profile ; [abr] Y; pyrimidine ; [abr] araC; arabinosylcytosine ; [abr] e^6G; O6-ethyl guanine ; [abr] m^6G; O6-methyi guanine
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Inorganic Biochemistry 43 (1991), S. 433 
    ISSN: 0162-0134
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...