ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-82/33
    In: CRREL Report, 82-33
    Description / Table of Contents: Arctic sea ice is freckled with melt ponds during the ablation season; Antarctic sea ice has few, if any. On the basis of a simple surface heat budget, we investigate the meteorological conditions necessary for the onset of surface melting in an attempt to explain these observations. The low relative humidity associated with the relatively dry winds off the continent and an effective radiation parameter smaller than that characteristic of the Arctic are primarily responsible for the absence of melt features in the Antarctic. Together these require a surface-layer air temperature above 0 C before Antarctic sea ice can melt. A ratio of the bulk transfer coefficients C sub H/C sub E less than 1 also contributes to the dissimilarity in Arctic and Antarctic ablation seasons. The effects of wind speed and of the sea-ice roughness on the absolute values of C sub H and C sub E seem to moderate regional differences, but final assessment of this hypothesis awaits better data, especially from the Antarctic.
    Type of Medium: Series available for loan
    Pages: 16 Seiten , Illustrationen
    Series Statement: CRREL Report 82-33
    Language: English
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-82/12
    In: CRREL Report, 82-12
    Description / Table of Contents: From a high-quality set of velocity, temperature, and humidity profiles collected upwind and downwind of a step change in surface roughness, temperature, and moisture, we have calculated upwind and downwind values of the heat fluxes and friction velocity. The surface change is from smooth to rough; upwind, the sensible heat flux is upward and the latent heat flux is zero; downwind, the surface is well-watered so that the latent heat flux is upward while the sensible heat flux is downward. The downwind latent heat flux in this fetch-limited flow obeys NL=0.08 Rx 0.76 where NL is the latent heat Nusselt number and Rx is the fetch Reynolds number, a parameter for characterizing fetch-limited flows. Because this relation is virtually the same as one found to describe the sensible heat and condensate fluxes over arctic leads, we conclude that the Nusselt numbers nondimensionalizing scalar fluxes are the same for a given fetch Reynolds number when boundary conditions are similar.
    Type of Medium: Series available for loan
    Pages: vii, 18 Seiten , Illustrationen
    Series Statement: CRREL Report 82-12
    Language: English
    Note: CONTENTS Abstract Preface List of symbols Introduction Upwind: flux gradient method Downwind: integral method ResulIts Energy budget Latent heat flux Surface stress Downwind humidity profiles Discussion Conclusions Literature cited
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-86/9
    In: CRREL Report, 86-9
    Description / Table of Contents: The bulk aerodynamic transfer coefficients for sensible (C sub H) and latent (C sub E) heat over snow and sea ice surfaces are necessary for accurately modeling the surface energy budget but are very difficult to measure. This report therefore presents a theory that predicts C sub H and C sub E as functions of the wind speed and a surface roughness parameter. The crux of the model is establishing the interfacial sublayer profiles of the scalars, temperature and water vapor, over aerodynamically smooth and rough surfaces. These interfacial sublayer profiles are delivered from surface-renewal model in which turbulent eddies continually sweep down to the surface, transfer scalar contaminants across the interface by molecular diffusion, and then burst away. Matching the interfacial sublayer profiles with the usual semilogarithmic inertial sublayer profiles yields the roughness lengths for temperature and water vapor. With these and a model for the drag coefficient over snow and sea ice based on actual measurements, the transfer coefficients are predicted. C sub E is always a few percent larger than C and H. Both decrease monotonically with increasing wind speed for speeds above 1 m/s, both increase at all winds speeds as the surface gets rougher. Both, nevertheless, are almost between 0.0010 and 0.0015.
    Type of Medium: Series available for loan
    Pages: vi, 26 Seiten , Illustrationen
    Series Statement: CRREL Report 86-9
    Language: English
    Note: CONTENTS Abstract Preface Nomenclature Introduction Aerodynamically rough surface Aerodynamically smooth surface Scalar transfer coefficients Conclusions Literature cited
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-87/21
    In: CRREL Report, 87-21
    Description / Table of Contents: The author measured time series of longitudinal (u) and vertical (w) velocity and temperature (t) and humidity (q) fluctuations with fast-responding sensors in the near-neutrally stable surface layer over a snow-covered field. These series yielded individual spectra and u-w, w-t, w-q and t-q cospectra, phase spectra and coherence spectra for nondimensional frequencies (fz/U) from roughly 0.001 to 10. With the exception of the u-w cospectra, all the spectra and cospectra displayed the expected dependence on frequency in an inertial or inertial-convective subrange. All, however, contained significantly more energy at low frequency than the Kansas neutral-stability spectra and cospectra. This excess low-frequency energy and the erratic behavior of the u-w cospectra imply that forested hills bordering the site on two sides were producing disturbances in the flow field at scales roughly equal to the height of the hills, 100 m. The phase and coherence spectra suggest that internal gravity waves were also frequently present, since the atmospheric boundary layer generally had slightly stable stratification. Consequently, at this complex site, turbulence alone determines the spectra and cospectra at high frequency; at low frequency the spectra and cospectra reflect a combination of topographically generated turbulence and internal waves. From the measured temperature and humidity spectra and the t-q cospectra, the author computed refractive index spectra for light of 0.55-micrometer and millimeter wavelengths. The refractive index spectra had shapes like the other scalar spectra: excess energy at low frequency and an inertial-convective subrange at high frequency.
    Type of Medium: Series available for loan
    Pages: v, 50 Seiten , Illustrationen
    Series Statement: CRREL Report 87-21
    Language: English
    Note: CONTENTS Abstract Preface Introduction Measurements Spectra u and w velocity spectra Temperature and humidity spectra Inertial-dissipation estimates Cospectra u-w cospectra w-t and w-q cospectra t-q cospectra Refractive index spectra Conclusions Literature cited
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI A4-01-0211
    Type of Medium: Monograph available for loan
    Pages: 32 S.
    Series Statement: CRREL Special Report 83-14
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-10
    Description: [1]  The first four rocks examined by the Mars Science Laboratory (MSL) Alpha Particle X-ray Spectrometer (APXS) indicate Curiosity landed in a lithologically diverse region of Mars. These rocks, collectively dubbed the Bradbury assemblage, were studied along an eastward traverse (sols 46-102). Compositions range from Na and Al-rich mugearite Jake_Matijevic to Fe, Mg, and Zn-rich alkali-rich basalt/hawaiite Bathurst_Inlet and span nearly the entire range in FeO* and MnO of the datasets from previous martian missions and martian meteorites. The Bradbury assemblage is also enriched in K and moderately volatile metals (Zn and Ge). These elements do not correlate with Cl or S, suggesting they are associated with the rocks themselves and not with salt-rich coatings. Three out of the four Bradbury rocks plot along a line in elemental variation diagrams, suggesting mixing between Al-rich and Fe-rich components. ChemCam analyses give insight to their degree of chemical heterogeneity and grain size. Variations in trace elements detected by ChemCam suggest chemical weathering (Li) and concentration in mineral phases (e.g., Rb and Sr in feldspars). We interpret the Bradbury assemblage to be broadly volcanic and/or volcaniclastic, derived either from near the Gale crater rim and transported by the Peace Vallis fan network, or from a local volcanic source within Gale Crater. High Fe and Fe/Mn in Et_Then likely reflect secondary precipitation of Fe 3+ -oxides as a cement or rind. The K-rich signature of the Bradbury assemblage, if igneous in origin, may have formed by small degrees of partial melting of metasomatized mantle.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-04
    Description: Late Cenozoic climate history in Africa was punctuated by episodes of variability, characterized by the appearance and disappearance of large freshwater lakes within the East African Rift Valley. In the Baringo-Bogoria basin, a well-dated sequence of diatomites and fluviolacustrine sediments documents the precessionally forced cycling of an extensive lake system between 2.70 Ma and 2.55 Ma. One diatomite unit was studied, using the oxygen isotope composition of diatom silica combined with X-ray fluorescence spectrometry and taxonomic assemblage changes, to explore the nature of climate variability during this interval. Data reveal a rapid onset and gradual decline of deepwater lake conditions, which exhibit millennial-scale cyclicity of ~1400–1700 yr, similar to late Quaternary Dansgaard-Oeschger events. These cycles are thought to reflect enhanced precipitation coincident with increased monsoonal strength, suggesting the existence of a teleconnection between the high latitudes and East Africa during this period. Such climatic variability could have affected faunal and floral evolution at the time.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-15
    Description: A suite of eight rocks analyzed by the Curiosity Rover while it was stopped at the Rocknest sand ripple show the greatest chemical divergence of any potentially sedimentary rocks analyzed in the early part of the mission. Relative to average martian soil and to the stratigraphically lower units encountered as part of the Yellowknife Bay formation, these rocks are significantly depleted in MgO, with a mean of 1.3 wt %, and high in Fe, averaging over 20 wt % FeO T . with values between 15 - 26 wt% FeO T . The variable iron and low magnesium, and rock texture make it unlikely that these are igneous rocks. Rock surface textures range from rough to smooth, can be pitted or grooved, and show various degrees of wind erosion. Some rocks display poorly defined layering while others seem to show possible fractures. Narrow vertical voids are present in Rocknest-3, one of the rocks showing the strongest layering. Rocks in the vicinity of Rocknest may have undergone some diagenesis similar to other rocks in the Yellowknife Bay Formation as indicated by the presence of soluble calcium phases. The most reasonable scenario is that fine-grained sediments, potentially a mixture of feldspar-rich rocks from Bradbury Rise and normal martian soil, was lithified together by an iron-rich cement.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-05-23
    Description: The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Knoll, A H -- Arvidson, R E -- Ashley, J W -- Bell, J F 3rd -- Calvin, W M -- Christensen, P R -- Clark, B C -- Cohen, B A -- de Souza, P A Jr -- Edgar, L -- Farrand, W H -- Fleischer, I -- Gellert, R -- Golombek, M P -- Grant, J -- Grotzinger, J -- Hayes, A -- Herkenhoff, K E -- Johnson, J R -- Jolliff, B -- Klingelhofer, G -- Knudson, A -- Li, R -- McCoy, T J -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Morris, R V -- Rice, J W Jr -- Schroder, C -- Sullivan, R J -- Yen, A -- Yingst, R A -- New York, N.Y. -- Science. 2009 May 22;324(5930):1058-61. doi: 10.1126/science.1170355.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19461001" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; *Mars ; Spacecraft ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-23
    Description: Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webster, Chris R -- Mahaffy, Paul R -- Flesch, Gregory J -- Niles, Paul B -- Jones, John H -- Leshin, Laurie A -- Atreya, Sushil K -- Stern, Jennifer C -- Christensen, Lance E -- Owen, Tobias -- Franz, Heather -- Pepin, Robert O -- Steele, Andrew -- MSL Science Team -- Achilles, Cherie -- Agard, Christophe -- Alves Verdasca, Jose Alexandre -- Anderson, Robert -- Anderson, Ryan -- Archer, Doug -- Armiens-Aparicio, Carlos -- Arvidson, Ray -- Atlaskin, Evgeny -- Aubrey, Andrew -- Baker, Burt -- Baker, Michael -- Balic-Zunic, Tonci -- Baratoux, David -- Baroukh, Julien -- Barraclough, Bruce -- Bean, Keri -- Beegle, Luther -- Behar, Alberto -- Bell, James -- Bender, Steve -- Benna, Mehdi -- Bentz, Jennifer -- Berger, Gilles -- Berger, Jeff -- Berman, Daniel -- Bish, David -- Blake, David F -- Blanco Avalos, Juan J -- Blaney, Diana -- Blank, Jen -- Blau, Hannah -- Bleacher, Lora -- Boehm, Eckart -- Botta, Oliver -- Bottcher, Stephan -- Boucher, Thomas -- Bower, Hannah -- Boyd, Nick -- Boynton, Bill -- Breves, Elly -- Bridges, John -- Bridges, Nathan -- Brinckerhoff, William -- Brinza, David -- Bristow, Thomas -- Brunet, Claude -- Brunner, Anna -- Brunner, Will -- Buch, Arnaud -- Bullock, Mark -- Burmeister, Sonke -- Cabane, Michel -- Calef, Fred -- Cameron, James -- Campbell, John -- Cantor, Bruce -- Caplinger, Michael -- Caride Rodriguez, Javier -- Carmosino, Marco -- Carrasco Blazquez, Isaias -- Charpentier, Antoine -- Chipera, Steve -- Choi, David -- Clark, Benton -- Clegg, Sam -- Cleghorn, Timothy -- Cloutis, Ed -- Cody, George -- Coll, Patrice -- Conrad, Pamela -- Coscia, David -- Cousin, Agnes -- Cremers, David -- Crisp, Joy -- Cros, Alain -- Cucinotta, Frank -- d'Uston, Claude -- Davis, Scott -- Day, Mackenzie -- de la Torre Juarez, Manuel -- DeFlores, Lauren -- DeLapp, Dorothea -- DeMarines, Julia -- DesMarais, David -- Dietrich, William -- Dingler, Robert -- Donny, Christophe -- Downs, Bob -- Drake, Darrell -- Dromart, Gilles -- Dupont, Audrey -- Duston, Brian -- Dworkin, Jason -- Dyar, M Darby -- Edgar, Lauren -- Edgett, Kenneth -- Edwards, Christopher -- Edwards, Laurence -- Ehlmann, Bethany -- Ehresmann, Bent -- Eigenbrode, Jen -- Elliott, Beverley -- Elliott, Harvey -- Ewing, Ryan -- Fabre, Cecile -- Fairen, Alberto -- Farley, Ken -- Farmer, Jack -- Fassett, Caleb -- Favot, Laurent -- Fay, Donald -- Fedosov, Fedor -- Feldman, Jason -- Feldman, Sabrina -- Fisk, Marty -- Fitzgibbon, Mike -- Floyd, Melissa -- Fluckiger, Lorenzo -- Forni, Olivier -- Fraeman, Abby -- Francis, Raymond -- Francois, Pascaline -- Freissinet, Caroline -- French, Katherine Louise -- Frydenvang, Jens -- Gaboriaud, Alain -- Gailhanou, Marc -- Garvin, James -- Gasnault, Olivier -- Geffroy, Claude -- Gellert, Ralf -- Genzer, Maria -- Glavin, Daniel -- Godber, Austin -- Goesmann, Fred -- Goetz, Walter -- Golovin, Dmitry -- Gomez Gomez, Felipe -- Gomez-Elvira, Javier -- Gondet, Brigitte -- Gordon, Suzanne -- Gorevan, Stephen -- Grant, John -- Griffes, Jennifer -- Grinspoon, David -- Grotzinger, John -- Guillemot, Philippe -- Guo, Jingnan -- Gupta, Sanjeev -- Guzewich, Scott -- Haberle, Robert -- Halleaux, Douglas -- Hallet, Bernard -- Hamilton, Vicky -- Hardgrove, Craig -- Harker, David -- Harpold, Daniel -- Harri, Ari-Matti -- Harshman, Karl -- Hassler, Donald -- Haukka, Harri -- Hayes, Alex -- Herkenhoff, Ken -- Herrera, Paul -- Hettrich, Sebastian -- Heydari, Ezat -- Hipkin, Victoria -- Hoehler, Tori -- Hollingsworth, Jeff -- Hudgins, Judy -- Huntress, Wesley -- Hurowitz, Joel -- Hviid, Stubbe -- Iagnemma, Karl -- Indyk, Steve -- Israel, Guy -- Jackson, Ryan -- Jacob, Samantha -- Jakosky, Bruce -- Jensen, Elsa -- Jensen, Jaqueline Klovgaard -- Johnson, Jeffrey -- Johnson, Micah -- Johnstone, Steve -- Jones, Andrea -- Joseph, Jonathan -- Jun, Insoo -- Kah, Linda -- Kahanpaa, Henrik -- Kahre, Melinda -- Karpushkina, Natalya -- Kasprzak, Wayne -- Kauhanen, Janne -- Keely, Leslie -- Kemppinen, Osku -- Keymeulen, Didier -- Kim, Myung-Hee -- Kinch, Kjartan -- King, Penny -- Kirkland, Laurel -- Kocurek, Gary -- Koefoed, Asmus -- Kohler, Jan -- Kortmann, Onno -- Kozyrev, Alexander -- Krezoski, Jill -- Krysak, Daniel -- Kuzmin, Ruslan -- Lacour, Jean Luc -- Lafaille, Vivian -- Langevin, Yves -- Lanza, Nina -- Lasue, Jeremie -- Le Mouelic, Stephane -- Lee, Ella Mae -- Lee, Qiu-Mei -- Lees, David -- Lefavor, Matthew -- Lemmon, Mark -- Lepinette Malvitte, Alain -- Leveille, Richard -- Lewin-Carpintier, Eric -- Lewis, Kevin -- Li, Shuai -- Lipkaman, Leslie -- Little, Cynthia -- Litvak, Maxim -- Lorigny, Eric -- Lugmair, Guenter -- Lundberg, Angela -- Lyness, Eric -- Madsen, Morten -- Maki, Justin -- Malakhov, Alexey -- Malespin, Charles -- Malin, Michael -- Mangold, Nicolas -- Manhes, Gerard -- Manning, Heidi -- Marchand, Genevieve -- Marin Jimenez, Mercedes -- Martin Garcia, Cesar -- Martin, Dave -- Martin, Mildred -- Martinez-Frias, Jesus -- Martin-Soler, Javier -- Martin-Torres, F Javier -- Mauchien, Patrick -- Maurice, Sylvestre -- McAdam, Amy -- McCartney, Elaina -- McConnochie, Timothy -- McCullough, Emily -- McEwan, Ian -- McKay, Christopher -- McLennan, Scott -- McNair, Sean -- Melikechi, Noureddine -- Meslin, Pierre-Yves -- Meyer, Michael -- Mezzacappa, Alissa -- Miller, Hayden -- Miller, Kristen -- Milliken, Ralph -- Ming, Douglas -- Minitti, Michelle -- Mischna, Michael -- Mitrofanov, Igor -- Moersch, Jeff -- Mokrousov, Maxim -- Molina Jurado, Antonio -- Moores, John -- Mora-Sotomayor, Luis -- Morookian, John Michael -- Morris, Richard -- Morrison, Shaunna -- Mueller-Mellin, Reinhold -- Muller, Jan-Peter -- Munoz Caro, Guillermo -- Nachon, Marion -- Navarro Lopez, Sara -- Navarro-Gonzalez, Rafael -- Nealson, Kenneth -- Nefian, Ara -- Nelson, Tony -- Newcombe, Megan -- Newman, Claire -- Newsom, Horton -- Nikiforov, Sergey -- Nixon, Brian -- Noe Dobrea, Eldar -- Nolan, Thomas -- Oehler, Dorothy -- Ollila, Ann -- Olson, Timothy -- de Pablo Hernandez, Miguel Angel -- Paillet, Alexis -- Pallier, Etienne -- Palucis, Marisa -- Parker, Timothy -- Parot, Yann -- Patel, Kiran -- Paton, Mark -- Paulsen, Gale -- Pavlov, Alex -- Pavri, Betina -- Peinado-Gonzalez, Veronica -- Peret, Laurent -- Perez, Rene -- Perrett, Glynis -- Peterson, Joe -- Pilorget, Cedric -- Pinet, Patrick -- Pla-Garcia, Jorge -- Plante, Ianik -- Poitrasson, Franck -- Polkko, Jouni -- Popa, Radu -- Posiolova, Liliya -- Posner, Arik -- Pradler, Irina -- Prats, Benito -- Prokhorov, Vasily -- Purdy, Sharon Wilson -- Raaen, Eric -- Radziemski, Leon -- Rafkin, Scot -- Ramos, Miguel -- Rampe, Elizabeth -- Raulin, Francois -- Ravine, Michael -- Reitz, Gunther -- Renno, Nilton -- Rice, Melissa -- Richardson, Mark -- Robert, Francois -- Robertson, Kevin -- Rodriguez Manfredi, Jose Antonio -- Romeral-Planello, Julio J -- Rowland, Scott -- Rubin, David -- Saccoccio, Muriel -- Salamon, Andrew -- Sandoval, Jennifer -- Sanin, Anton -- Sans Fuentes, Sara Alejandra -- Saper, Lee -- Sarrazin, Philippe -- Sautter, Violaine -- Savijarvi, Hannu -- Schieber, Juergen -- Schmidt, Mariek -- Schmidt, Walter -- Scholes, Daniel -- Schoppers, Marcel -- Schroder, Susanne -- Schwenzer, Susanne -- Sebastian Martinez, Eduardo -- Sengstacken, Aaron -- Shterts, Ruslan -- Siebach, Kirsten -- Siili, Tero -- Simmonds, Jeff -- Sirven, Jean-Baptiste -- Slavney, Susie -- Sletten, Ronald -- Smith, Michael -- Sobron Sanchez, Pablo -- Spanovich, Nicole -- Spray, John -- Squyres, Steven -- Stack, Katie -- Stalport, Fabien -- Stein, Thomas -- Stewart, Noel -- Stipp, Susan Louise Svane -- Stoiber, Kevin -- Stolper, Ed -- Sucharski, Bob -- Sullivan, Rob -- Summons, Roger -- Sumner, Dawn -- Sun, Vivian -- Supulver, Kimberley -- Sutter, Brad -- Szopa, Cyril -- Tan, Florence -- Tate, Christopher -- Teinturier, Samuel -- ten Kate, Inge -- Thomas, Peter -- Thompson, Lucy -- Tokar, Robert -- Toplis, Mike -- Torres Redondo, Josefina -- Trainer, Melissa -- Treiman, Allan -- Tretyakov, Vladislav -- Urqui-O'Callaghan, Roser -- Van Beek, Jason -- Van Beek, Tessa -- VanBommel, Scott -- Vaniman, David -- Varenikov, Alexey -- Vasavada, Ashwin -- Vasconcelos, Paulo -- Vicenzi, Edward -- Vostrukhin, Andrey -- Voytek, Mary -- Wadhwa, Meenakshi -- Ward, Jennifer -- Weigle, Eddie -- Wellington, Danika -- Westall, Frances -- Wiens, Roger Craig -- Wilhelm, Mary Beth -- Williams, Amy -- Williams, Joshua -- Williams, Rebecca -- Williams, Richard B -- Wilson, Mike -- Wimmer-Schweingruber, Robert -- Wolff, Mike -- Wong, Mike -- Wray, James -- Wu, Megan -- Yana, Charles -- Yen, Albert -- Yingst, Aileen -- Zeitlin, Cary -- Zimdar, Robert -- Zorzano Mier, Maria-Paz -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):260-3. doi: 10.1126/science.1237961.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. chris.r.webster@jpl.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869013" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...