ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on the structural level. In this paper, the state-of-the-art in fracture toughness characterization, and interlaminar fracture mechanics analysis tools are described. To demonstrate the application on the structural level, a panel was selected which is reinforced with stringers. Full implementation of interlaminar fracture mechanics in design however remains a challenge and requires a continuing development effort of codes to calculate energy release rates and advancements in delamination onset and growth criteria under mixed mode conditions.
    Keywords: Composite Materials
    Type: NAFEMS Nordic Seminar; May 31, 2006 - Jun 01, 2006; Copenhagen; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-05
    Electronic ISSN: 2213-7467
    Topics: Computer Science , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-01
    Print ISSN: 0266-3538
    Electronic ISSN: 1879-1050
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from skin. In a second step, a two dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location, Hence. Unstable delamination propagation is likely to occur as observed in the experiments.
    Keywords: Composite Materials
    Type: Journal of Composite Materials; Volume 34; No. 15; 1263-1300
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-05
    Description: A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. In a second step, a two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location. Hence, unstable delamination propagation is likely to occur as observed in the experiments.
    Keywords: Composite Materials
    Type: Journal of Composite Materials; Volume 34; No. 15; 1263-1300
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.
    Keywords: Composite Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-05
    Description: A shell/3D modeling technique was developed for which a local three-dimensional solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a plate or shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local three-dimensional model and the global structural model which has been meshed with plate or shell finite elements. Double Cantilever Beam (DCB), End Notched Flexure (ENF), and Single Leg Bending (SLB) specimens were modeled using the shell/3D technique to study the feasibility for pure mode I (DCB), mode II (ENF) and mixed mode I/II (SLB) cases. Mixed mode strain energy release rate distributions were computed across the width of the specimens using the virtual crack closure technique. Specimens with a unidirectional layup and with a multidirectional layup where the delamination is located between two non-zero degree plies were simulated. For a local three-dimensional model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures modeled with plate elements, the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.
    Keywords: Mechanical Engineering
    Type: Composites Part A: Applied Science and Manufacturing; Volume 32; No. 1; 25-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.
    Keywords: Aircraft Stability and Control
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: The development and application of benchmark examples for the assessment of quasistatic delamination propagation capabilities was demonstrated for ANSYS (TradeMark) and Abaqus/Standard (TradeMark). The examples selected were based on finite element models of Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. First, quasi-static benchmark results were created based on an approach developed previously. Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in ANSYS (TradeMark) and Abaqus/Standard (TradeMark). Input control parameters were varied to study the effect on the computed delamination propagation. Overall, the benchmarking procedure proved valuable by highlighting the issues associated with choosing the appropriate input parameters for the VCCT implementations in ANSYS and Abaqus/Standard. However, further assessment for mixed-mode delamination fatigue onset and growth is required. Additionally studies should include the assessment of the propagation capabilities in more complex specimens and on a structural level.
    Keywords: Composite Materials
    Type: NF1676L-16582 , American Society for Composites Annual Technical Conference; 9-11 Sept. 2013; State Cllege, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.
    Keywords: Aircraft Design, Testing and Performance
    Type: 13th Annual Technical Conference on Composite Materials; Sep 21, 1998 - Sep 23, 1998; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...