ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-10-06
    Description: Hydrogen-fueled combustion systems are becoming popular in recent years. Methane is one of the significant hydrogen supplier in nature. Thus, in the study, the natural gas-fueled reactor-assisted solid oxide fuel-cell system is configured to provide a current to load the battery to turn the propeller of an unmanned aerial vehicle in the large-scale hydrogen-onboard system. The methane-fueled reactor has not been studied under a large-scale case in literature yet. To investigate the amount of products, this paper presents about the steam-reforming performance of natural gas in steady state and transient in the reactor. The influence of vital parameters such as steam/carbon, gas feed temperatures, the amount of heat transferred to the reactor in methane steam reforming for a plug flow reactor, and a continuous stirred tank-type reactor is investigated respectively. Methane conversion, yield of hydrogen gas and H2 gas generation for different medium conditions along the reactor are studied on by using the COMSOL Multiphysics program. The steady-state and time-dependent characteristics of the steam reforming of natural gas are focused on. The high conversion ratio of methane gas is obtained by ranking the steam/carbon ratio. The released hydrogen gas molar flow rate is increasing according to the reactor volume. The achieved power provided by produced gas of H2 is 97 hp supplying the thrust force for an unmanned aerial vehicle.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-28
    Description: The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...