ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 665 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Present methods for long-term hematopoietic culture (LTHC) employ a static culture environment which is not well-characterized. Primitive long-term culture-initiating cell (LTC-IC) numbers have been shown to decline in conventional static human LTHC, even with exogenous cytokine combinations. We ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 24-33 
    ISSN: 0006-3592
    Keywords: unilineage model ; tissue function ex vivo ; hematopoiesis ; stem cell expansion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Stem cell models are used to describe the function of several tissues. We present unilineage kinetic description of stem cell models and their application to the analysis of ex vivo hematopoietic cell expansion data. This model has the capability to simulate the total cell number and the number of cells at each stage of differentiation over time as a function of the stem cell self-renewal probability, the growth rate of each subpopulation, and the mature cell death rate. The model predicts experimental observations in perfusion-based hematopoietic bioreactor systems. To obtain net cell expansion ex vivo, the model simulations show that the stem cell self-renewal probability must exceed one-half, thus resulting in net expansion of the stem cell population. Experimental data on long-term culture-initiating cells (LTC-IC) confirm this prediction and the probability of self-renewal is estimated to be 0.62 to 0.73. This self-renewal probability, along with the death rate, define a relationship in which the apparent overall growth rate is less than the compartmental growth rate. Finally, the model predicts that cells beyond the stem cell stage of differentiation must self-renew to achieve the level of expansion within the time frame observed in experimental systems. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 909-930 
    ISSN: 0006-3592
    Keywords: tissue engineering ; hematopoiesis ; review ; bioreactors ; transplantation ; scaleup ; cell culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The reconstruction of functioning human tissues ex vivo is becoming an important part of biotechnology. There are compelling scientific, clinical, and biotechnological reasons for fully or partially reconstituting human tissues such as skin, bone marrow, and liver ex vivo. In particular, bone marrow is a tissue of much importance, and there are significant societal and health benefits derived from a successfully constructed ex vivo hematopoietic system. In this article, we review the current status of this effort. The topics covered include the current understanding of the biology of human hematopoiesis, the motivation for reconstructing it ex vivo, the current state of ex vivo human hematopoietic cultures, the development of important metrics to judge culture performance, and an approach based on in vivo mimetics to accomplish this goal. We discuss some applications of functional ex vivo hematopoietic cultures and the biological and engineering challenges that face research in this area. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 609-616 
    ISSN: 0006-3592
    Keywords: stem cells ; bone marrow ; ex vivo expansion ; perfusion culture ; hematopoiesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The establishment of prolific long-term human bone marrow cultures has led to the development of hematopoietic bioreactor systems. A single batch expansion of bone marrow mononuclear cell populations leads to a 10- to 30-fold increase in total cell number and in the number of colony forming units-granulocyte/macrophage (CFU-GMs), and a four- to tenfold increase in the number of long-term culture initiating cells (LTC-ICs). In principle, unlimited expansion of cells should be attainable from a pool of stem cells if all the necessary requirements leading to stem cell maintenance and division are met. In this article, we take the first step toward the identification of factors that limit single batch expansion of ex vivo bone marrow cells in perfusion-based bioreactor systems. One possible constraint is the size of the growth surface area required. This constraint can be overcome by harvesting half the cell population periodically. We found that harvesting cells every 3 to 4 days, beginning on day 11 of culture, led to an extended growth period. Overall calculated cell expansion exceeded 100-fold and the CFU-GM expansion exceeded 30-fold over a 27-day period. These calculated values are based on growth that could be obtained from the harvested cell population. Growth of the adherent cell layer was stable, whereas the nonadherent cell population diminished with increasing number of passages. These results show that the bioreactor protocols published to date are suboptimal for long-term cultivation, and that further definition and refinement is likely to lead to even greater expansion of hematopoietic cell populations obtained from bone marrow. More importantly, these results show that the LTC-IC measured during the single pass expansion do have further expansion potential that can be realized by frequent harvesting. Finally, the present culture conditions provide a basis for an assay system for the identifications provide a basis for an assay system for the identification of the factors that determine the long-term maintenance and replication of human stem cells ex vivo. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0778
    Keywords: Bioreactor ; bone marrow ; ex vivo expansion ; perfusion culture ; replating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The capability to expand human bone marrow mononuclear cells (BM MNC) in high density perfusion culture chambers (bioreactors) has recently been developed. In these bioreactors, total cell colony-forming unit-granulocyte/macrophage (CFU-GM), and long-term culture-initiating cell (LTC-IC) numbers increase significantly over a 14-day period. However, cell growth ceases after the 14-day period, possibly due to cell density limitations. Because of the remaining presence of early cells, it should be feasible to replate the cells and obtain continued expansion. In this study, we demonstrate that bioreactors generate cells, which upon replating into secondary bioreactors, lead to continued cell, CFU-GM, and LTC-IC8 (measured after 8 weeks of secondary culture) expansion. A two-stage protocol, involving the replating of cells on days 9 to 12 of culture into new bioreators at the original seeding density, yielded greater than 50-fold cell expansion from BM MNC in 25 days. CFU-GM were expanded inhibitory factor (LIF) had no significant effect on total cells, CFU-GM, or LTC-IC5 in this system. We conclude that two-stage bioreactor cultures are capable of supporting extended growth of human BM MNC, CFU-GM, and LTC-IC8. The continued expansion of these primitive cells in the second stage of culture suggests that primitive cells with significant proliferative potential were generated in this system, and previous data on LTC-IC5 expansion has now been extended to LTC-IC8 expansion. Further optimization of culture conditions is likely to improve on the results obtained here, thus making perfusion bioreactor culture correspondingly more attractive for expanding BM MNC for BM transplantation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3592
    Keywords: bone marrow ; hematopoiesis ; perfusion ; culture optimization ; stroma ; stem cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Hematopoiesis, the formation of mature blood cells from stem (LTC-IC) and progenitor (CFU-GM) cells in the bone marrow, is a complex tissue-forming process that leads to many important physiological functionalities. Consequently, a functioning ex vivo hematopoietic system has a variety of basic scientific and clinical uses. The design and operation of such a system presents the tissue engineer with challenges and choices. In this study, three culture variables were used to control ex vivo human hematopoiesis. Systematic variation of inoculum density (ID), medium exchange interval (MEI), and the use of preformed stroma (PFS) showed that (1) all three variables significantly influenced culture performance, (2) the three variables interacted strongly, and (3) the variables could be manipulated to achieve the optimization of different performance criteria. Donor-to-donor variability in culture performance was great at low ID but was minimized at higher ID. PFS had a large positive effect on cell and CFU-GM output at low ID, but had minimal effect at higher ID. In fact, PFS caused a decrease in LTC-IC output at high ID. The effects of PFS indicated that stromal cell elements became more limiting than proliferative cell elements as ID was reduced.In cultures without PFS, maximum cell output was obtained with high ID using a short MEI, whereas the greatest cell expansion ratio was obtained at low ID with an intermediate MEI. Maximum CFU-GM output was obtained from cultures with high ID using a short to intermediate MEI, whereas the greatest CFU-GM expansion ratio was obtained at intermediate ID with an intermediate MEI. The addition of PFS altered the locations of these maxima. In general, PFS moved the maxima to lower ID, and culture output became more sensitive to MEI. Therefore, the optimization of one performance criterion always resulted in a decline of the others. This study demonstrates that ex vivo tissue function is sensitive to many culture variables in an interactive fashion and that systematic multivariable studies are required to characterize tissue function. Once the effects of individual variables and their interactions are known, this knowledge can be used to optimize tissue performance with respect to desired criteria. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-03-01
    Print ISSN: 0733-222X
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-01-01
    Print ISSN: 0920-9069
    Electronic ISSN: 1573-0778
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-06-01
    Description: Characterization of hematopoietic cells and measurement of their proliferative potential is critical in many research and clinical applications. Because in vivo assay of human cells is not possible and xenogeneic assays are not yet routine, in vitro assays such as the long-term culture-initiating cell (LTC-IC) assay have been widely adopted. This study investigated LTC-IC assay linearity and reproducibility and resulting implications with respect to quantitation of primitive cell expansion. Measurement of secondary colony-forming cells (2° CFCs) from 5-week cultures of bone marrow (BM) mononuclear cells (MNCs) showed that 2° CFC frequency varied with assay plating density in a nonlinear fashion. The measured 2° CFC frequency increased from 4.6 to 63.8 (per 105 MNCs) as assay plating density was decreased from 5 × 105 to 2 × 104 MNCs per well (P 〈 10−6, n = 37). In contrast, assay of CD34-enriched cells was linear within the range studied. Assays of cells obtained from expansion cultures initiated with either MNCs or CD34-enriched cells were also nonlinear. Consequently, calculated 2° CFC expansion ratios were ambiguous and dependent on the assay plating densities used. Limiting dilution analysis (LDA) results were also nonlinear, with LTC-IC frequency increasing from 8.2 to 22.4 per 105 MNCs (P 〈 10−4, n = 100) as assay plating densities were decreased. Despite the nonlinearity, 2° CFC and LTC-IC assay results were consistent and reproducible over time with different samples and techniques and gave a semiquantitative indication of relative primitive cell frequency. Although CD34-enriched cells gave linear assay output, purification of cells for every assay is impractical. Therefore, exposure of cells to 5-fluorouracil (5-FU) was explored for improving assay linearity. Incubation of MNCs in 250 μg/mL 5-FU for 1 to 2 hours depleted accessory cells and resulted in a cell population that gave linear 2° CFC readout. The 5-FU–resistant LTC-ICs accounted for 49% of the total LTC-IC population, adding the potential benefit of restricting assay measurement to more primitive noncycling LTC-ICs. Consequently, similar linear assay results can be obtained with either the bulk 2° CFC or LDA LTC-IC methods after 5-FU, but multiple plating densities are nevertheless still required in both methods due to the greater than 100-fold range in primitive cell frequency present in normal human donor BM.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...