ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-25
    Description: Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric-oxide- and natriuretic-peptide-coupled signalling, stimulating phosphorylation changes by protein kinase G. Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation. Furthermore, although PDE5A regulates nitric-oxide-generated cGMP, nitric oxide signalling is often depressed by heart disease. PDEs controlling natriuretic-peptide-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A (refs 7, 8) is expressed in the mammalian heart, including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates natriuretic-peptide- rather than nitric-oxide-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neurohormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of nitric oxide synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phosphoproteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signalling independent of the nitric oxide pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376609/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376609/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Dong I -- Zhu, Guangshuo -- Sasaki, Takashi -- Cho, Gun-Sik -- Hamdani, Nazha -- Holewinski, Ronald -- Jo, Su-Hyun -- Danner, Thomas -- Zhang, Manling -- Rainer, Peter P -- Bedja, Djahida -- Kirk, Jonathan A -- Ranek, Mark J -- Dostmann, Wolfgang R -- Kwon, Chulan -- Margulies, Kenneth B -- Van Eyk, Jennifer E -- Paulus, Walter J -- Takimoto, Eiki -- Kass, David A -- HHSN268201000032C/HL/NHLBI NIH HHS/ -- HL-07227/HL/NHLBI NIH HHS/ -- HL-089297/HL/NHLBI NIH HHS/ -- HL-093432/HL/NHLBI NIH HHS/ -- HL-119012/HL/NHLBI NIH HHS/ -- HL089847/HL/NHLBI NIH HHS/ -- HL105993/HL/NHLBI NIH HHS/ -- HL68891/HL/NHLBI NIH HHS/ -- N01HV28180/HL/NHLBI NIH HHS/ -- P01 HL107153/HL/NHLBI NIH HHS/ -- R01 HL089297/HL/NHLBI NIH HHS/ -- R01 HL089847/HL/NHLBI NIH HHS/ -- R01 HL093432/HL/NHLBI NIH HHS/ -- R01 HL105993/HL/NHLBI NIH HHS/ -- R01 HL111198/HL/NHLBI NIH HHS/ -- R01 HL119012/HL/NHLBI NIH HHS/ -- T32 HL007227/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Mar 26;519(7544):472-6. doi: 10.1038/nature14332. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA. ; Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan. ; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands. ; 1] Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA [2] Heart Institute and Advanced Clinical Biosystems Research Institute, Cedar Sinai Medical Center, 8700 Beverly Blvd, AHSP A9229 Los Angeles, California 90048, USA. ; Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Chuncheon 200-701, Korea. ; Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA. ; Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799991" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & ; inhibitors/deficiency/genetics/*metabolism ; Animals ; Aortic Valve Stenosis/complications ; Cardiomegaly/drug therapy/*enzymology/etiology/*metabolism ; Cyclic GMP/*metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Muscle Cells/enzymology ; Myocardium/enzymology ; Natriuretic Peptides/metabolism ; *Nitric Oxide/metabolism ; Nitric Oxide Synthase ; Phosphodiesterase Inhibitors/pharmacology/therapeutic use ; Pressure ; Signal Transduction/drug effects ; Stress, Physiological ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-23
    Description: The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of alpha-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robison, Patrick -- Caporizzo, Matthew A -- Ahmadzadeh, Hossein -- Bogush, Alexey I -- Chen, Christina Yingxian -- Margulies, Kenneth B -- Shenoy, Vivek B -- Prosser, Benjamin L -- HL089847/HL/NHLBI NIH HHS/ -- HL105993/HL/NHLBI NIH HHS/ -- R00-HL114879/HL/NHLBI NIH HHS/ -- R01EB017753/EB/NIBIB NIH HHS/ -- T32AR053461-09/AR/NIAMS NIH HHS/ -- T32HL007954/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):aaf0659. doi: 10.1126/science.aaf0659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA. ; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. ; Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. bpros@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Desmin/metabolism ; Elasticity ; Heart Failure/metabolism/physiopathology ; Humans ; Male ; Mice ; Microtubules/*metabolism ; Models, Biological ; *Myocardial Contraction ; Myocytes, Cardiac/metabolism/*physiology ; Peptide Synthases/genetics/metabolism ; *Protein Processing, Post-Translational ; RNA, Small Interfering/genetics ; Rats ; Rats, Sprague-Dawley ; Sarcomeres/metabolism ; Tubulin/*metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...