ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-06-30
    Description: Haze pollution is affected by local air pollutants, regional transport of background particles and precursors, atmospheric chemistry related to secondary aerosol formation, and meteorological conditions conducive to physical, dynamical, and chemical processes. In the large, populated and industrialized areas like the Asian continental outflow region, the combination of regional transport and local stagnation often exacerbates urban haze pollution. However, the detailed chemical processes underlying the enhancement of urban haze induced by the combined effect of local emissions and transported remote pollutants are still unclear. Here, we demonstrate an important role of transported hygroscopic particles in increasing local inorganic aerosols, by studying the chemical composition of PM2.5 collected between October 2012 and June 2014 in Seoul, a South Korean megacity in the Asian continental outflow region, using the ISORROPIA II thermodynamic model. PM2.5 measured under the condition of regional transport from the upwind source areas in China was higher in mass concentration and richer in secondary inorganic aerosol (SIA) species (SO42-, NO3-, and NH4+) and aerosol liquid water (ALW) compared to that measured under non-transport conditions. The secondary inorganic species and ALW were both increased, particularly in cases with high PM2.5 levels, and this indicates inorganic species as a major driver of hygroscopicity. We conclude that the urban haze pollution in a continental outflow region like Seoul, particularly during the cold season, can be exacerbated by ALW in the transported particles, which enhances the nitrate partitioning into the particle phase in NOx- and NH3-rich urban areas. This study reveals the synergistic effect of remote and local sources on urban haze pollution in the downwind region and provides insight into the nonlinearity of domestic and foreign contributions to receptor PM2.5 concentrations in numerical air quality models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-04
    Description: The air quality of the megacities in populated and industrialized regions like East Asia is affected by both local and regional emission sources. The combined effect of regional transport and local emissions on multiday haze was investigated through a synthetic analysis of PM2. 5 sampled at both an urban site in Seoul, South Korea and an upwind background site on Deokjeok Island over the Yellow Sea during a severe multiday haze episode in late February 2014. Inorganic components and carbonaceous species of daily PM2. 5 samples were measured, and gaseous pollutants, local meteorological factors, and synoptic meteorological conditions were also determined. A dominance of fine-mode particles (PM2. 5 ∕ PM10  ∼  0.8), a large secondary inorganic fraction (76 %), high OC ∕ EC (〉 7), and highly oxidized aerosols (oxygen-to-carbon ratio of  ∼  0.6 and organic-mass-to-carbon ratio of  ∼  1.9) under relatively warm, humid, and stagnant conditions characterize the multiday haze episode in Seoul; however, the early and late stages of the episode show different chemical compositions of PM2. 5. High concentrations of sulfate in both Seoul and the upwind background in the early stage suggest a significant regional influence on the onset of the multiday haze. At the same time, high concentrations of nitrate and organic compounds in Seoul, which are local and highly correlated with meteorological factors, suggest the contribution of local emissions and secondary formation under stagnant meteorological conditions to the haze. A slow eastward-moving high-pressure system from southern China to the East China Sea induces the regional transport of aerosols and potential gaseous precursors for secondary aerosols from the North China Plain in the early stage but provides stagnant conditions conducive to the accumulation and the local formation of aerosols in the late stage. A blocking ridge over Alaska that developed during the episode hinders the zonal propagation of synoptic-scale systems and extends the haze period to several days. This study provides chemical insights into haze development sequentially by regional transport and local sources, and shows that the synoptic condition plays an important role in the dynamical evolution of long-lasting haze in the Asian continental outflow region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-03
    Description: Air quality of the megacities in the populated and industrialized regions like East Asia is affected by both local and regional emission sources. A combined effect of regional transport and local emissions on multi-day haze was investigated by synthetic analysis of PM2.5, sampled at both an urban site in Seoul, South Korea and an upwind background site in Deokjeok Island over the Yellow Sea, during a severe multi-day haze episode in late February 2014. Inorganic components as well as carbonaceous species of daily PM2.5 samples were measured, and gaseous pollutants, local meteorological factors and synoptic meteorological conditions were also determined. Dominance of fine-mode particles, a large secondary inorganic fraction (76 %), high OC/EC ratio (7.3), and highly oxidized aerosols under relatively warm, humid, and stagnant conditions characterize the multi-day haze episode; however, the early and late stages of the episode show different chemical compositions of PM2.5. High concentrations of sulfate in both Seoul and the upwind background in the early stage suggest a significant regional influence on the onset of the multi-day haze. At the same time, high concentrations of nitrate and organic compounds in Seoul, which are local and highly correlated with meteorological factors, suggest the contribution of local emissions and secondary formation under the stagnant meteorological condition to the haze. A slow eastward-moving high-pressure system from southern China to the East China Sea induces the regional transport of aerosols and potential gaseous precursors for secondary aerosols from the North China Plain in the early stage but provides stagnant conditions conducive to the accumulation and the local formation of aerosols in the late stage. A blocking ridge over Alaska developed during the episode hinders the zonal propagation of synoptic-scale systems and extends the haze period to several days. This study provides chemical insights of haze development sequentially by regional transport and local sources, and shows that the synoptic condition plays an important role for the dynamical evolution of long-lasting haze in the Asian continental outflow region.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...