ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2013-03-18
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-14
    Description: Sea ice is an important meteorological factor affecting the global climate system, but it is difficult to observe in sea ice ground truth data because of its location mainly at high latitudes and in polar regions. Accordingly, sea-ice detection research has been actively conducted using satellites, since the 1970s. Polar-orbiting and geostationary satellites are used for this purpose; notably, geostationary satellites are capable of real-time monitoring of specific regions. In this paper, we introduce the Geo-KOMPSAT-2A (GK-2A)/Advanced Meteorological Imager (AMI) sea-ice detection algorithm using Japan Meteorological Agency (JMA) Himawari-8/Advanced Himawari Imager (AHI) data as proxy data. The GK-2A/AMI, which is Korea Meteorological Administration (KMA)’s next-generation geostationary satellite launched in December 2018 and Himawari-8/AHI have optically similar channel data, and the observation area includes East Asia and the Western Pacific. The GK-2A/AMI sea-ice detection algorithm produces sea-ice data with a 10-min temporal resolution, a 2-km spatial resolution and sets the Okhotsk Sea and Bohai Sea, where the sea ice is distributed during the winter in the northern hemisphere. It used National Meteorological Satellite Center (NMSC) cloud mask as the preceding data and a dynamic threshold method instead of the static threshold method that is commonly performed in existing sea-ice detection studies. The dynamic threshold methods for sea-ice detection are dynamic wavelength warping (DWW) and IST0 method. The DWW is a method for determining the similarity by comparing the pattern of reflectance change according to the wavelength of two satellite data. The IST0 method detects sea ice by using the correlation between 11.2-μm brightness temperature (BT11.2) and brightness temperature difference (BTD) [BT11.2–BT12.3] according to ice surface temperature (IST). In addition, the GK-2A/AMI sea-ice detection algorithm reclassified the cloud area into sea ice using a simple test. A comparison of the sea-ice data derived the GK-2A/AMI sea-ice detection algorithm with the S-NPP/visible infrared imaging radiometer suite (VIIRS) sea ice characterization product indicates consistency of 99.0% and inconsistency of 0.9%. The overall accuracy (OA) of GK-2A/AMI sea-ice data with the sea ice region of interest (ROI) data, which is constructed by photo-interpretation method from RGB images, is 97.2%.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-04
    Description: The Korea Meteorological Administration successfully launched Korea’s next-generation meteorological satellite, Geo-KOMPSAT-2A (GK-2A), on 5 December 2018. It belongs to the new generation of GEO (Geostationary Elevation Orbit) satellite which offers capabilities to disseminate high spatial- (0.5–2 km) and high temporal-resolution (10 min) observations over a broad area, herein a geographic disk encompassing the Asia–Oceania region. The targeted objective is to enhance our understanding of climate change, owing to a bulk of coherent observations. For such, we developed an algorithm to map the land surface albedo (LSA), which is a major Essential Climate Variable (ECV). The retrieval algorithm devoted to GK-2A/Advanced Meteorological Imager (AMI) data considered Japan’s Himawari-8/Advanced Himawari Imager (AHI) data for prototyping, as this latter owns similar specifications to AMI. Our proposed algorithm is decomposed in three major steps: atmospheric correction, bidirectional reflectance distribution function (BRDF) modeling and angular integration, and narrow-to-broadband conversion. To perform BRDF modeling, the optimization method using normalized reflectance was applied, which improved the quality of BRDF modeling results, particularly when the number of observations was less than 15. A quality assessment was performed to compare our results to those of Moderate Resolution Imaging Spectroradiometer (MODIS) LSA products and ground measurement from Aerosol Robotic Network (AERONET) sites, Australian and New Zealand flux tower network (OzFlux) site and the Korea Flux Network (KoFlux) site from throughout 2017. Our results show dependable spatial and temporal consistency with MODIS broadband LSA data, and rapid changes in LSA due to snowfall and snow melting were well expressed in the temporal profile of our results. Our outcomes also show good agreement with the ground measurements from AERONET, OzFlux and KoFlux ground-based network with root mean square errors (RMSE) of 0.0223 and 0.0306, respectively, which is close to the accuracy of MODIS broadband LSA. Moreover, our results reveal still more reliable LSA products even when clouds are frequently present, such as during the summer monsoon season. It shows that our results are useful for continuous LSA monitoring.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-01
    Description: Snow cover plays an important role in climate and hydrology, at both global and regional scales. Most previous studies have used static threshold techniques to detect snow cover, which can lead to errors such as misclassification of snow and clouds, because the reflectance of snow cover exhibits variability and is affected by several factors. Therefore, we present a simple new algorithm for mapping snow cover from Moderate Resolution Imaging Spectroradiometer (MODIS) data using dynamic wavelength warping (DWW), which is based on dynamic time warping (DTW). DTW is a pattern recognition technique that is widely used in various fields such as human action recognition, anomaly detection, and clustering. Before performing DWW, we constructed 49 snow reflectance spectral libraries as reference data for various solar zenith angle and digital elevation model conditions using approximately 1.6 million sampled data. To verify the algorithm, we compared our results with the MODIS swath snow cover product (MOD10_L2). Producer’s accuracy, user’s accuracy, and overall accuracy values were 92.92%, 78.41%, and 92.24%, respectively, indicating good overall classification accuracy. The proposed algorithm is more useful for discriminating between snow cover and clouds than threshold techniques in some areas, such as those with a high viewing zenith angle.
    Print ISSN: 1687-725X
    Electronic ISSN: 1687-7268
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: Air temperature (Ta), defined as the temperature 2 m above the land’s surface, is one of the most important factors for environment and climate studies. Ta can be measured by obtaining the land surface temperature (LST) which can be retrieved with the 11- and 12-µm bands from satellite imagery over a large area, and LST is highly correlated with Ta. To measure the Ta in a broad area, we studied a Ta retrieval method through Deep Neural Network (DNN) using in-situ data and satellite data of South Korea from 2014 to 2017. To retrieve accurate Ta, we selected proper input variables and conditions of a DNN model. As a result, Normalized Difference Vegetation Index, Normalized Difference Water Index, and 11- and 12-µm band data were applied to the DNN model as input variables. And we also selected proper condition of the DNN model with test various conditions of the model. In validation result in the DNN model, the best accuracy of the retrieved Ta showed an correlation coefficient value of 0.98 and a root mean square error (RMSE) of 2.19 K. And then we additional 3 analysis to validate accuracy which are spatial representativeness, seasonal analysis and time series analysis. We tested the spatial representativeness of the retrieved Ta. Results for window sizes less than 132 × 132 showed high accuracy, with a correlation coefficient of over 0.97 and a RMSE of 1.96 K and a bias of −0.00856 K. And in seasonal analysis, the spring season showed the lowest accuracy, 2.82 K RMSE value, other seasons showed high accuracy under 2K RMSE value. We also analyzed a time series of six the Automated Synoptic Observing System (ASOS) points (i.e., locations) using data obtained from 2018 to 2019; all of the individual correlation coefficient values were over 0.97 and the RMSE values were under 2.41 K. With these analysis, we confirm accuracy of the DNN model was higher than previous studies. And we thought the retrieved Ta can be used in other studies or climate model to conduct urban problems like urban heat islands and to analyze effects of arctic oscillation.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...